Skip to main content

Oscillations and Synchrony in Attention

  • Chapter
  • First Online:
Neuronal Oscillations of Wakefulness and Sleep

Abstract

Attention is one of the most important higher cognitive processes underlying the normal functioning of the human brain. It refers to a set of neural mechanisms that govern the selection and gating of sensory events, thoughts, and actions. Although psychologists have described this concept more than 100 years ago, until recently, underlying computational mechanisms and their neurophysiological implementation remained largely unknown. Research over the past decade has seen an increase of converging evidence that human brain oscillations are intimately linked to attention. Here, we discuss how brain oscillations are related to three major components of attention that contribute to the preferential processing of behaviourally relevant sensory input: first, the selective processing of attended stimuli; second, the suppression or filtering out of irrelevant information; and third, the dynamic allocation of processing resources. Finally, we review an integrative approach towards expressing attentional influences on perception by means of brain oscillations, and link it to a recent computational model of attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helmholtz H. Handbuch der physiologischen optik. Leipzig: L. Voss; 1867. p. 741.

    Google Scholar 

  2. Broadbent DE. Failures of attention in selective listening. J Exp Psychol. 1952;44(6):428–33.

    Article  CAS  PubMed  Google Scholar 

  3. Posner MI, Petersen SE. The attention system of the human brain. Ann Rev Neurosci. 1990;13:25–42.

    Article  CAS  PubMed  Google Scholar 

  4. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15.

    Article  CAS  PubMed  Google Scholar 

  5. Awh E, Belopolsky AV, Theeuwes J. Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends Cogn Sci. 2012;16(8):437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Broadbent DE. Perception and communication. London: Pergamon Press; 1958.

    Book  Google Scholar 

  7. Treisman AM. The effect of irrelevant material on the efficiency of selective listening. Am J Psychol. 1964;77(4):533–46.

    Article  CAS  PubMed  Google Scholar 

  8. Posner MI, Snyder CR, Davidson BJ. Attention and the detection of signals. J Exp Psychol. 1980;109(2):160–74.

    Article  CAS  PubMed  Google Scholar 

  9. Eriksen CW, St. James JD. Visual-attention within and around the field of focal attention—a zoom lens model. Percept Psychophys. 1986;40(4):225–40.

    Article  CAS  PubMed  Google Scholar 

  10. Treisman A. Features and objects: the fourteenth Bartlett memorial lecture. Q J Exp Psychol A. 1988;40(2):201–37.

    Article  CAS  PubMed  Google Scholar 

  11. Wolfe JM. Guided search 2.0. A revised model of visual search. Psychon Bull Rev. 1994;1(2):202–38.

    Article  CAS  PubMed  Google Scholar 

  12. Bundesen C. A computational theory of visual attention. Philos Trans R Soc Lond Ser B Biol Sci. 1998;353(1373):1271–81.

    Article  CAS  Google Scholar 

  13. Hillyard SA, Hink RF, Schwent VL, Picton TW. Electrical signs of selective attention in human brain. Science. 1973;182(4108):177–80.

    Article  CAS  PubMed  Google Scholar 

  14. Moran J, Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985;229(4715):782–4.

    Article  CAS  PubMed  Google Scholar 

  15. Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.

    Article  CAS  PubMed  Google Scholar 

  16. Luck SJ, Chelazzi L, Hillyard SA, Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol. 1997;77(1):24–42.

    Article  CAS  PubMed  Google Scholar 

  17. Reynolds JH, Chelazzi L, Desimone R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci. 1999;19(5):1736–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kastner S, Ungerleider LG. The neural basis of biased competition in human visual cortex. Neuropsychologia. 2001;39(12):1263–76.

    Article  CAS  PubMed  Google Scholar 

  19. Ungerleider LG, Kastner S. Mechanisms of visual attention in the human cortex. Ann Rev Neurosci. 2000;23(1):315–41.

    Article  PubMed  Google Scholar 

  20. Pessoa L, Kastner S, Ungerleider LG. Neuroimaging studies of attention: from modulation of sensory processing to top-down control. J Neurosci. 2003;23(10):3990–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andersen SK, Muller MM, Martinovic J. Bottom-up biases in feature-selective attention. J Neurosci. 2012;32(47):16953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keitel C, Andersen SK, Quigley C, Muller MM. Independent effects of attentional gain control and competitive interactions on visual stimulus processing. Cereb Cortex. 2013;23(4):940–6.

    Article  PubMed  Google Scholar 

  23. Reynolds JH, Heeger DJ. The normalization model of attention. Neuron. 2009;61(2):168–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shipp S. The brain circuitry of attention. Trends Cogn Sci. 2004;8(5):223–30.

    Article  PubMed  Google Scholar 

  25. Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, et al. A common network of functional areas for attention and eye movements. Neuron. 1998;21(4):761–73.

    Article  CAS  PubMed  Google Scholar 

  26. Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron. 2008;60(4):709–19.

    Article  CAS  PubMed  Google Scholar 

  27. Buschman TJ, Miller EK. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 2007;315(5820):1860–2.

    Article  CAS  PubMed  Google Scholar 

  28. Gregoriou GG, Gotts SJ, Zhou H, Desimone R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science. 2009;324(5931):1207–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schnitzler A, Gross J. Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci. 2005;6(4):285–96.

    Article  CAS  PubMed  Google Scholar 

  30. Regan D. Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. New York: Elsevier; 1989.

    Google Scholar 

  31. Keitel C, Quigley C, Ruhnau P. Stimulus-driven brain oscillations in the alpha range: entrainment of intrinsic rhythms or frequency-following response? J Neurosci. 2014;34(31):10137–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Andersen SK, Muller MM, Hillyard SA. Tracking the allocation of attention in visual scenes with steady-state evoked potentials. In: Posner MI, editor. Cognitive neuroscience of attention. 2nd ed. New York: Guilford; 2011. p. 197–216.

    Google Scholar 

  33. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9(10):474–80.

    Article  PubMed  Google Scholar 

  34. Schroeder CE, Lakatos P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 2009;32(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  35. Gray CM, Konig P, Engel AK, Singer W. Oscillatory responses in cat visual-cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 1989;338(6213):334–7.

    Article  CAS  PubMed  Google Scholar 

  36. Borgers C, Kopell N. Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural Comput. 2005;17(3):557–608.

    Article  PubMed  Google Scholar 

  37. Gray CM, Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual-cortex. Proc Natl Acad Sci U S A. 1989;86(5):1698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Engel AK, Konig P, Kreiter AK, Gray CM, Singer W. Temporal coding by coherent oscillations as a potential solution to the binding problem—physiological evidence. Nonlinear Syst. 1991;2:3–25.

    Google Scholar 

  39. Muller MM, Junghofer M, Elbert T, Rochstroh B. Visually induced gamma-band responses to coherent and incoherent motion: a replication study. Neuroreport. 1997;8(11):2575–9.

    Article  CAS  PubMed  Google Scholar 

  40. Tallon-Baudry C. The roles of gamma-band oscillatory synchrony in human visual cognition. Front Biosci. 2009;14:321–32.

    Article  Google Scholar 

  41. Azouz R, Gray CM. Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron. 2003;37(3):513–23.

    Article  CAS  PubMed  Google Scholar 

  42. Hasenstaub A, Shu YS, Haider B, Kraushaar U, Duque A, McCormick DA. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron. 2005;47(3):423–35.

    Article  CAS  PubMed  Google Scholar 

  43. Womelsdorf T, Schoffelen J-M, Oostenveld R, Singer W, Desimone R, Engel AK, et al. Modulation of neuronal interactions through neuronal synchronization. Science. 2007;316(5831):1609–12.

    Article  CAS  PubMed  Google Scholar 

  44. Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32:209–24.

    Article  CAS  PubMed  Google Scholar 

  45. Buehlmann A, Deco G. Optimal information transfer in the cortex through synchronization. Plos Comput Biol. 2010;6(9). pii: e1000934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38(3):301–13.

    Article  Google Scholar 

  47. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kopell N, Ermentrout GB, Whittington MA, Traub RD. Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci U S A. 2000;97(4):1867–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, et al. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci U S A. 2004;101(35):13050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hipp JF, Engel AK, Siegel M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron. 2011;69(2):387–96.

    Article  CAS  PubMed  Google Scholar 

  51. Bosman CA, Lansink CS, Pennartz CM. Functions of gamma-band synchronization in cognition: from single circuits to functional diversity across cortical and subcortical systems. Eur J Neurosci. 2014;39(11):1982–99.

    Article  PubMed  Google Scholar 

  52. Cannon J, McCarthy MM, Lee S, Lee J, Borgers C, Whittington MA, et al. Neurosystems: brain rhythms and cognitive processing. Eur J Neurosci. 2014;39(5):705–19.

    Article  PubMed  Google Scholar 

  53. Lumer ED. Effects of spike timing on winner-take-all competition in model cortical circuits. Neural Comput. 2000;12(1):181–94.

    Article  CAS  PubMed  Google Scholar 

  54. Fries P, Nikolic D, Singer W. The gamma cycle. Trends Neurosci. 2007;30(7):309–16.

    Article  CAS  PubMed  Google Scholar 

  55. Roberts MJ, Lowet E, Brunet NM, Ter Wal M, Tiesinga P, Fries P, et al. Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. Neuron. 2013;78(3):523–36.

    Article  CAS  PubMed  Google Scholar 

  56. Bauer M, Oostenveld R, Peeters M, Fries P. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci. 2006;26(2):490–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gregoriou GG, Gotts SJ, Desimone R. Cell-type-specific synchronization of neural activity in FEF with V4 during attention. Neuron. 2012;73(3):581–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bosman CA, Schoffelen JM, Brunet N, Oostenveld R, Bastos AM, Womelsdorf T, et al. Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron. 2012;75(5):875–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Steinmann S, Leicht G, Ertl M, Andreou C, Polomac N, Westerhausen R, et al. Conscious auditory perception related to long-range synchrony of gamma oscillations. NeuroImage. 2014;100:435–43.

    Article  PubMed  Google Scholar 

  60. Schoffelen JM, Poort J, Oostenveld R, Fries P. Selective movement preparation is subserved by selective increases in corticomuscular gamma-band coherence. J Neurosci. 2011;31(18):6750–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lisman JE, Jensen O. The theta-gamma neural code. Neuron. 2013;77(6):1002–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hillyard SA, Vogel EK, Luck SJ. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc Lond Ser B Biol Sci. 1998;353(1373):1257–70.

    Article  CAS  Google Scholar 

  63. Klimesch W, Sauseng P, Hanslmayr S, Gruber W, Freunberger R. Event-related phase reorganization may explain evoked neural dynamics. Neurosci Biobehav Rev. 2007;31(7):1003–16.

    Article  PubMed  Google Scholar 

  64. Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, et al. Dynamic brain sources of visual evoked responses. Science. 2002;295(5555):690–4.

    Article  CAS  PubMed  Google Scholar 

  65. Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science. 2008;320(5872):110–3.

    Article  CAS  PubMed  Google Scholar 

  66. Lakatos P, O’Connell MN, Barczak A, Mills A, Javitt DC, Schroeder CE. The leading sense: supramodal control of neurophysiological context by attention. Neuron. 2009;64(3):419–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Busse L, Roberts KC, Crist RE, Weissman DH, Woldorff MG. The spread of attention across modalities and space in a multisensory object. Proc Natl Acad Sci U S A. 2005;102(51):18751–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Talsma D, Senkowski D, Soto-Faraco S, Woldorff MG. The multifaceted interplay between attention and multisensory integration. Trends Cogn Sci. 2010;14(9):400–10.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kayser C, Ince RAA, Panzeri S. Analysis of slow (theta) oscillations as a potential temporal reference frame for information coding in sensory cortices. PLoS Comput Biol. 2012;8(10):e1002717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Besle J, Schevon CA, Mehta AD, Lakatos P, Goodman RR, McKhann GM, et al. Tuning of the human neocortex to the temporal dynamics of attended events. J Neurosci. 2011;31(9):3176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bauml K-H. Prestimulus oscillations predict visual perception performance between and within subjects. NeuroImage. 2007;37(4):1465–73.

    Article  PubMed  Google Scholar 

  72. van Dijk H, Schoffelen J-M, Oostenveld R, Jensen O. Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci. 2008;28(8):1816–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Romei V, Rihs T, Brodbeck V, Thut G. Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. Neuroreport. 2008;19(2):203–8.

    Article  PubMed  Google Scholar 

  74. Haegens S, Nácher V, Luna R, Romo R, Jensen O. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc Natl Acad Sci U S A. 2011;108(48):19377–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thut G, Nietzel A, Brandt SA, Pascual-Leone A. α-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci. 2006;26(37):9494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kelly SP, Gomez-Ramirez M, Foxe JJ. The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study. Eur J Neurosci. 2009;30(11):2224–34.

    Article  PubMed  Google Scholar 

  77. Gould IC, Rushworth MF, Nobre AC. Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations. J Neurophysiol. 2011;105(3):1318–26.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rihs TA, Michel CM, Thut G. A bias for posterior alpha-band power suppression versus enhancement during shifting versus maintenance of spatial attention. NeuroImage. 2009;44(1):190–9.

    Article  PubMed  Google Scholar 

  79. Capilla A, Schoffelen JM, Paterson G, Thut G, Gross J. Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception. Cereb Cortex. 2014;24(2):550–61.

    Article  PubMed  Google Scholar 

  80. Worden MS, Foxe JJ, Wang N, Simpson GV. Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci. 2000;20(6):Rc63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tan H-RM, Leuthold H, Gross J. Gearing up for action: attentive tracking dynamically tunes sensory and motor oscillations in the alpha and beta band. NeuroImage. 2013;82:634–44.

    Article  Google Scholar 

  82. Snyder AC, Foxe JJ. Anticipatory attentional suppression of visual features indexed by oscillatory alpha-band power increases: a high-density electrical mapping study. J Neurosci. 2010;30(11):4024–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jokisch D, Jensen O. Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J Neurosci. 2007;27(12):3244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. May ES, Butz M, Kahlbrock N, Hoogenboom N, Brenner M, Schnitzler A. Pre- and post-stimulus alpha activity shows differential modulation with spatial attention during the processing of pain. NeuroImage. 2012;62(3):1965–74.

    Article  PubMed  Google Scholar 

  85. van Ede F, de Lange F, Jensen O, Maris E. Orienting attention to an upcoming tactile event involves a spatially and temporally specific modulation of sensorimotor alpha- and beta-band oscillations. J Neurosci. 2011;31(6):2016–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Haegens S, Händel BF, Jensen O. Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task. J Neurosci. 2011;31(14):5197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Haegens S, Luther L, Jensen O. Somatosensory anticipatory alpha activity increases to suppress distracting input. J Cogn Neurosci. 2012;24(3):677–85.

    Article  PubMed  Google Scholar 

  88. Fu KM, Foxe JJ, Murray MM, Higgins BA, Javitt DC, Schroeder CE. Attention-dependent suppression of distracter visual input can be cross-modally cued as indexed by anticipatory parieto-occipital alpha-band oscillations. Brain Res Cogn Brain Res. 2001;12(1):145–52.

    Article  CAS  PubMed  Google Scholar 

  89. Bauer M, Kennett S, Driver J. Attentional selection of location and modality in vision and touch modulates low-frequency activity in associated sensory cortices. J Neurophysiol. 2012;107(9):2342–51.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Frey JN, Mainy N, Lachaux J-P, Müller N, Bertrand O, Weisz N. Selective modulation of auditory cortical alpha activity in an audiovisual spatial attention task. J Neurosci. 2014;34(19):6634–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hwang K, Ghuman AS, Manoach DS, Jones SR, Luna B. Cortical neurodynamics of inhibitory control. J Neurosci. 2014;34(29):9551–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol. 2011;21(14):1176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Romei V, Gross J, Thut G. On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? J Neurosci. 2010;30(25):8692–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Buffalo EA, Fries P, Landman R, Liang H, Desimone R. A backward progression of attentional effects in the ventral stream. Proc Natl Acad Sci U S A. 2010;107(1):361–5.

    Article  CAS  PubMed  Google Scholar 

  95. Nobre AC, Rohenkohl G, Stokes M. Nervous anticipation: top-down biasing across space and time. In: Posner MI, editor. Cognitive neuroscience of sttention. 2nd ed. New York: Guilford; 2012. p. 159–86.

    Google Scholar 

  96. Rohenkohl G, Cravo AM, Wyart V, Nobre AC. Temporal expectation improves the quality of sensory information. J Neurosci. 2012;32(24):8424–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Large EW, Jones MR. The dynamics of attending: how people track time-varying events. Psychol Rev. 1999;106(1):119–59.

    Article  Google Scholar 

  98. Jones MR. Time, our lost dimension—toward a new theory of perception, attention, and memory. Psychol Rev. 1976;83(5):323–55.

    Article  CAS  PubMed  Google Scholar 

  99. Henry MJ, Herrmann B. Low-frequency neural oscillations support dynamic attending in temporal context. Timing Time Percept. 2014;2(1):62–86.

    Article  Google Scholar 

  100. Busch NA, Dubois J, VanRullen R. The phase of ongoing EEG oscillations predicts visual perception. J Neurosci. 2009;29(24):7869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. VanRullen R, Busch NA, Drewes J, Dubois J. Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability. Front Psychol. 2011;2:60.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Henry MJ, Obleser J. Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proc Natl Acad Sci U S A. 2012;109(49):20095–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. de Graaf TA, Gross J, Paterson G, Rusch T, Sack AT, Thut G. Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation. PLoS One. 2013;8(3):e60035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Mathewson KE, Fabiani M, Gratton G, Beck DM, Lleras A. Rescuing stimuli from invisibility: inducing a momentary release from visual masking with pre-target entrainment. Cognition. 2010;115(1):186–91.

    Article  PubMed  Google Scholar 

  105. Spaak E, de Lange FP, Jensen O. Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. J Neurosci. 2014;34(10):3536–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gross J, Hoogenboom N, Thut G, Schyns P, Panzeri S, Belin P, et al. Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLoS Biol. 2013;11(12):e1001752.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zion Golumbic EM, Ding N, Bickel S, Lakatos P, Schevon CA, McKhann GM, et al. Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron. 2013;77(5):980–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P. Dynamics of active sensing and perceptual selection. Curr Opin Neurobiol. 2010;20(2):172–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Otero-Millan J, Troncoso XG, Macknik SL, Serrano-Pedraza I, Martinez-Conde S. Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. J Vis. 2008;8(14):21.1–18.

    Article  Google Scholar 

  110. Navarra J, Soto-Faraco S, Spence C. Discriminating speech rhythms in audition, vision, and touch. Acta Psychol. 2014;151:197–205.

    Article  Google Scholar 

  111. Ahissar E, Zacksenhouse M. Temporal and spatial coding in the rat vibrissal system. Prog Brain Res. 2001;130:75–87.

    Article  CAS  PubMed  Google Scholar 

  112. Gross J, Timmermann J, Kujala J, Dirks M, Schmitz F, Salmelin R, et al. The neural basis of intermittent motor control in humans. Proc Natl Acad Sci U S A. 2002;99(4):2299–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pollok B, Gross J, Dirks M, Timmermann L, Schnitzler A. The cerebral oscillatory network of voluntary tremor. J Physiol-London. 2004;554(3):871–8.

    Article  CAS  PubMed  Google Scholar 

  114. Melloni L, Schwiedrzik CM, Rodriguez E, Singer W. (Micro)Saccades, corollary activity and cortical oscillations. Trends Cogn Sci. 2009;13(6):239–45.

    Article  PubMed  Google Scholar 

  115. Drewes J, VanRullen R. This is the rhythm of your eyes: the phase of ongoing electroencephalogram oscillations modulates saccadic reaction time. J Neurosci. 2011;31(12):4698–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Deschenes M, Moore J, Kleinfeld D. Sniffing and whisking in rodents. Curr Opin Neurobiol. 2012;22(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  117. Rajkai C, Lakatos P, Chen CM, Pincze Z, Karmos G, Schroeder CE. Transient cortical excitation at the onset of visual fixation. Cereb Cortex. 2008;18(1):200–9.

    Article  PubMed  Google Scholar 

  118. VanRullen R, Zoefel B, Ilhan B. On the cyclic nature of perception in vision versus audition. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1641):20130214.

    Article  Google Scholar 

  119. Nobre AC, Gitelman DR, Dias EC, Mesulam MM. Covert visual spatial orienting and saccades: overlapping neural systems. NeuroImage. 2000;11(3):210–6.

    Article  CAS  PubMed  Google Scholar 

  120. Buschman TJ, Miller EK. Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations. Neuron. 2009;63(3):386–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. VanRullen R, Macdonald JSP. Perceptual echoes at 10 Hz in the human brain. Curr Biol. 2012;22(11):995–9.

    Article  CAS  PubMed  Google Scholar 

  122. Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T. To see or not to see: prestimulus alpha phase predicts visual awareness. J Neurosci. 2009;29(9):2725–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Busch NA, VanRullen R. Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc Natl Acad Sci U S A. 2010;107(37):16048–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. VanRullen R, Carlson T, Cavanagh P. The blinking spotlight of attention. Proc Natl Acad Sci U S A. 2007;104(49):19204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fiebelkorn IC, Saalmann YB, Kastner S. Rhythmic sampling within and between objects despite sustained attention at a cued location. Curr Biol. 2013;23(24):2553–8.

    Article  CAS  PubMed  Google Scholar 

  126. Landau A, Fries P. Attention samples stimuli rhythmically. Curr Biol. 2012;22(11):1000–4.

    Article  CAS  PubMed  Google Scholar 

  127. Dugue L, Vanrullen R. The dynamics of attentional sampling during visual search revealed by Fourier analysis of periodic noise interference. J Vis. 2014;14(2). pii:11.

    Article  PubMed  Google Scholar 

  128. Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11(7):267–9.

    Article  PubMed  Google Scholar 

  129. Canolty RT, Knight RT. The functional role of cross-frequency coupling. Trends Cogn Sci. 2010;14(11):506–15.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Jensen O, Gips B, Bergmann TO, Bonnefond M. Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci. 2014;37(7):357–69.

    Article  CAS  PubMed  Google Scholar 

  131. Corbetta M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc Natl Acad Sci U S A. 1998;95(3):831–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kayser C, Petkov CI, Logothetis NK. Visual modulation of neurons in auditory cortex. Cereb Cortex. 2008;18(7):1560–74.

    Article  PubMed  Google Scholar 

  133. Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J Neurophysiol. 2005;94(3):1904–11.

    Article  PubMed  Google Scholar 

  134. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313(5793):1626–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Arnal LH, Doelling KB, Poeppel D. Delta-beta coupled oscillations underlie temporal prediction accuracy. Cereb Cortex. 2015;25(9):3077–85.

    Article  PubMed  Google Scholar 

  136. Cohen MX, Elger CE, Fell J. Oscillatory activity and phase-amplitude coupling in the human medial frontal cortex during decision making. J Cogn Neurosci. 2009;21(2):390–402.

    Article  PubMed  Google Scholar 

  137. Szczepanski SM, Crone NE, Kuperman RA, Auguste KI, Parvizi J, Knight RT. Dynamic changes in phase-amplitude coupling facilitate spatial attention control in fronto-parietal cortex. PLoS Biol. 2014;12(8):e1001936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Montijn JS, Klink PC, van Wezel RJ. Divisive normalization and neuronal oscillations in a single hierarchical framework of selective visual attention. Front Neural Circuits. 2012;6:22.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Dugue L, Marque P, VanRullen R. The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J Neurosci. 2011;31(33):11889–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Gross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keitel, C., Thut, G., Gross, J. (2020). Oscillations and Synchrony in Attention. In: Dang-Vu, T., Courtemanche, R. (eds) Neuronal Oscillations of Wakefulness and Sleep. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0653-7_3

Download citation

Publish with us

Policies and ethics