Skip to main content

Generation and Analysis of CCM Phenotypes in C. elegans

  • Protocol
  • First Online:
Cerebral Cavernous Malformations (CCM)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2152))

Abstract

This chapter presents methods for exploiting the powerful tools available in the nematode worm Caenorhabditis elegans to understand the in vivo functions of cerebral cavernous malformation (CCM) genes and the organization of their associated signaling pathways. Included are methods for assessing phenotypes caused by loss-of-function mutations in the worm CCM genes kri-1 and ccm-3, CRISPR-based gene editing techniques, and protocols for conducting high-throughput forward genetic and small molecule screens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman JR, Kenyon C (2006) Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124:1055–1068

    Article  CAS  Google Scholar 

  2. Lant B, Yu B, Goudreault M et al (2015) CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling. Nat Commun 6:6449. https://doi.org/10.1038/ncomms7449

  3. Chapman EM, Lant B, Ohashi Y et al (2019) A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis. Nat Commun 10:1791. https://doi.org/10.1038/s41467-091-09829-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lant B, Pal S, Chapman EM et al (2018) Interrogating the ccm-3 gene network. Cell Rep 24:2857–2868

    Article  CAS  Google Scholar 

  5. Ito S, Greiss S, Gartner A et al (2010) Cell-nonautonomous regulation of C. elegans germ cell death by kri-1. Curr Biol 20:333–338

    Google Scholar 

  6. Lant B, Derry WB (2013) Methods for detection and analysis of apoptosis signaling in the C. elegans germline. Methods 61:174–182

    Article  CAS  Google Scholar 

  7. Pal S, Lant B, Yu B et al (2017) CCM-3 promotes C. elegans germline development by regulating vesicle trafficking, cytokinesis, and polarity. Curr Biol 27:868–876

    Google Scholar 

  8. Chu VT, Weber T, Wefers B (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548

    Article  CAS  Google Scholar 

  9. Paix A, Folkmann A, Rasoloson D (2015) High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 201:47–54

    Article  CAS  Google Scholar 

  10. Goudreault M, D’Ambrosio LM, Kean MJ (2009) A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics 8:157–171

    Article  CAS  Google Scholar 

  11. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  Google Scholar 

  12. Kim S, Kim D, Cho SW et al (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019

    Article  CAS  Google Scholar 

  13. Lant B, Derry WB (2014) High-throughput RNAi screening for germline apoptosis genes in Caenorhabditis elegans. Cold Spring Harb Protoc 2014:428–434. https://doi.org/10.1101/pdb.prot080234

  14. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Otten C, Knox J, Boulday G et al (2018) Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations. EMBO Mol Med. https://doi.org/10.15252/emmm.201809155

  16. Evans TC (ed) (2006) Transformation and microinjection. WormBook, ed. The C. elegans Research Community, WormBook. https://doi.org/10.1895/wormbook.1.108.1

  17. Chapman EM (2018) Elucidating the mechanism by which KRI-1/CCM1 regulates apoptosis cell non-autonomously in Caenorhabditis elegans. Dissertation, University of Toronto

    Google Scholar 

  18. Nilsen TW (2015) Poisoned primer extension. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot080986

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Brent Derry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Popiel, E., Derry, W.B. (2020). Generation and Analysis of CCM Phenotypes in C. elegans. In: Trabalzini, L., Finetti, F., Retta, S. (eds) Cerebral Cavernous Malformations (CCM) . Methods in Molecular Biology, vol 2152. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0640-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0640-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0639-1

  • Online ISBN: 978-1-0716-0640-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics