Skip to main content

Indoor Air Quality: Status and Standards

  • Reference work entry
  • First Online:
Air Pollution Sources, Statistics and Health Effects
  • Originally published in

Glossary

Aerosol:

A suspension of particulate matter composed of solid and/or liquid material in a gas.

Carbon Dioxide (CO2):

CO2 is a part of the atmosphere (>405 ppm), and indoor concentrations in excess of ambient are mainly generated by people, about a kilogram per day depending on metabolism. The indoor exposure limit is commonly taken as 1000 ppm, a level at which the negative health effects of CO2 are not yet significant. CO2 is a useful proxy for general indoor air quality including bioeffluents. Continued exposure to CO2 levels over 2500 ppm have been linked to drowsiness and tiredness. Studies have shown impacts on decision making and focus from around 1300 ppm [1].

Carbon Monoxide (CO):

CO is a product of incomplete combustion. Indoor sources include heaters and stoves, tobacco smoke, and candles. CO is toxic to humans. Ambient air contains about 1 ppm of carbon monoxide. In busy streets, the atmospheric mole fraction can be in the range of 10–20 ppm. Indoor levels generally...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Usha S et al (2012) Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ Health Perspect 120(12):1671–1677

    Article  CAS  Google Scholar 

  2. Maripuu M-L, Afshari A (2009) Demand controlled ventilation systems, state-of-the-art review, report. Chalmers University of Technology, Gothenburg

    Google Scholar 

  3. Liteplo RG, Beauchamp R, Meek ME, Chénier R (2002) Concise international chemical assessment document 40: formaldehyde. World Health Organization, Geneva

    Google Scholar 

  4. Directive EU (2004) Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products amending Directive 1999/13/EC. Off J Eur Union L 143 pp 0087–0096

    Google Scholar 

  5. Namieśnik J, Górecki T, Kozdroń-Zabiega ła B, Łukasiak J (1992) Indoor air quality (IAQ), pollutants, their sources and concentration levels. Build Environ 27(3):339–356

    Article  Google Scholar 

  6. Klepeis NE et al (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Sci Environ Epidemiol 11(3):231–252

    Article  CAS  Google Scholar 

  7. Hubbard TD et al (2016) Divergent Ah receptor ligand selectivity during hominin evolution. Mol Biol Evol 33(10):2648–2658

    Article  CAS  Google Scholar 

  8. World Health Organization Fact Sheet. Household air pollution and health. https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health. Accessed 26 May 2019

  9. Stolwijk JJ (1992) Risk assessment of acute health and comfort effects of indoor air pollution. Ann N Y Acad Sci 641(1):56–62

    Article  CAS  Google Scholar 

  10. Jones AP (1999) Indoor air quality and health. Atmos Environ 33:4535–4564

    CAS  Google Scholar 

  11. Bruce N, Perez-Padilla R, Albalak R (2000) Indoor air pollution in developing countries: a major environmental and public health challenge. Bulletin of the World Health Organization, p 15

    Google Scholar 

  12. Afshari A, Matson U, Ekberg L (2005) Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air 15(2):141–150

    CAS  Google Scholar 

  13. Matt GE et al (2004) Households contaminated by environmental tobacco smoke: sources of infant exposures. Tob Control 13(1):29–37

    CAS  Google Scholar 

  14. Fisk WJ, Black D, Brunner G (2011) Benefits and costs of improved IEQ in U.S. offices. Indoor Air 21(5):357–367

    CAS  Google Scholar 

  15. Destaillats H, Maddalena RL, Singer BC, Hodgson AT, McKone TE (2008) Indoor pollutants emitted by office equipment: a review of reported data and information needs. Atmos Environ 42(7):1371–1388

    CAS  Google Scholar 

  16. WHO (2019) WHO | Household air pollutants from non-combustion sources. Available http://www.who.int/airpollution/household/pollutants/noncombustion/en/. [Online]. Accessed 25 Mar 2019

  17. Salthammer T, Bahadir M (2009) Occurrence, dynamics and reactions of organic pollutants in the indoor environment. Clean (Weinh) 37(6):417–435

    CAS  Google Scholar 

  18. Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change, 3rd edn. Wiley, Hoboken

    Google Scholar 

  19. Abadie M, Limam K, Allard F (2001) Indoor particle pollution: effect of wall textures on particle deposition. Build Environ 36(7):821–827

    Google Scholar 

  20. Miguel AF, Aydin M, Reis AH (2005) Indoor deposition and forced re-suspension of respirable particles. Indoor Built Environ 14(5):391–396

    CAS  Google Scholar 

  21. Król S, Namieśnik J, Zabiegała B (2014) α-Pinene, 3-carene and d-limonene in indoor air of polish apartments: the impact on air quality and human exposure. Sci Total Environ 468–469:985–995

    Google Scholar 

  22. Mannucci PM, Harari S, Martinelli I, Franchini M (2015) Effects on health of air pollution: a narrative review. Intern Emerg Med 10(6):657–662

    Google Scholar 

  23. Mills NL et al (2009) Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med 6(1):36–44

    CAS  Google Scholar 

  24. HVAC Wikipedia. 08 Feb 2019

    Google Scholar 

  25. Atkinson J, Chartier Y, Pessoa-Silva CL, Jensen P, Li Y, Seto W-H (2009) Basic concept of ventilation flow rate. World Health Organization, Geneva

    Google Scholar 

  26. Atkinson J, Chartier Y, Pessoa-Silva CL, Jensen P, Li Y, Seto W-H (2009) Concepts and types of ventilation. World Health Organization, Geneva

    Google Scholar 

  27. Godish T, Spengler JD (1996) Relationships between ventilation and indoor air quality: a review. Indoor Air 6(2):135–145

    Google Scholar 

  28. Rates of outdoor supply air. [Online]. Available https://www.engineeringtoolbox.com/ventilation-air-flow-rate-d_115.html. Accessed 13 Feb 2019

  29. Sundell J (2004) On the history of indoor air quality and health. Indoor Air 14(s7):51–58

    Google Scholar 

  30. Graedel TE (1979) Terpenoids in the atmosphere. Rev Geophys 17(5):937–947

    Article  CAS  Google Scholar 

  31. Naik V et al (2010) Observational constraints on the global atmospheric budget of ethanol. Atmos Chem Phys 10(12):5361–5370

    Article  CAS  Google Scholar 

  32. Monod A, Sive BC, Avino P, Chen T, Blake DR, Sherwood Rowland F (2001) Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmos Environ 35(1):135–149

    Article  CAS  Google Scholar 

  33. Singh HB et al (1994) Acetone in the atmosphere: distribution, sources, and sinks. J Geophys Res Atmos 99(D1):1805–1819

    Article  CAS  Google Scholar 

  34. Isaksen ISA, Dalsøren SB (2011) Getting a better estimate of an atmospheric radical. Science 331(6013):38–39

    Article  CAS  Google Scholar 

  35. Li X, Gligorovski S, Herrmann H (2018) Underestimated contribution of HONO to indoor OH radicals: an emerging concern. Sci Bull 63(21):1383–1384

    Article  CAS  Google Scholar 

  36. Donahue NM, Epstein SA, Pandis SN, Robinson AL (2011) A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics. Atmos Chem Phys 11(7):3303–3318

    Article  CAS  Google Scholar 

  37. Uhde E, Salthammer T (2007) Impact of reaction products from building materials and furnishings on indoor air quality—a review of recent advances in indoor chemistry. Atmos Environ 41(15):3111–3128

    Article  CAS  Google Scholar 

  38. Alvarez EG et al (2013) Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid. PNAS 110(33):13294–13299

    Article  Google Scholar 

  39. Weschler CJ, Shields HC (1996) Production of the hydroxyl radical in indoor air. Environ Sci Technol 30(11):3250–3258

    Article  CAS  Google Scholar 

  40. Leungsakul S, Jaoui M, Kamens RM (2005) Kinetic mechanism for predicting secondary organic aerosol formation from the reaction of d-limonene with ozone. Environ Sci Technol 39(24):9583–9594

    CAS  Google Scholar 

  41. Sarwar G, Olson DA, Corsi RL, Weschler CJ (2004) Indoor fine particles: the role of Terpene emissions from consumer products. J Air Waste Manage Assoc 54(3):367–377

    Article  CAS  Google Scholar 

  42. Santanam S, Spengler J, Ryan P (1990) Particulate matter exposures estimated from an indoor-outdoor source apportionment study. Indoor Air 90:583–588

    Google Scholar 

  43. Jenkins RA, Geurin MR, Tomkins BA The chemistry of environmental tobacco smoke: composition and measurement. Lewis Publishers, Boca-Raton, p 47

    Google Scholar 

  44. Winickoff JP et al (2009) Beliefs about the health effects of ‘Thirdhand’ smoke and home smoking bans. Pediatrics 123(1):e74–e79

    Article  Google Scholar 

  45. Sleiman M et al (2010) Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke. Atmos Environ 44(34):4191–4198

    Article  CAS  Google Scholar 

  46. Petrick LM, Svidovsky A, Dubowski Y (2011) Thirdhand smoke: heterogeneous oxidation of nicotine and secondary aerosol formation in the indoor environment. Environ Sci Technol 45(1):328–333

    Article  CAS  Google Scholar 

  47. Ghaffarianhoseini A et al (2018) Sick building syndrome: are we doing enough? Archit Sci Rev 61(3):99–121

    Article  Google Scholar 

  48. Jafari MJ et al (2015) Association of Sick Building Syndrome with indoor air parameters. Tanaffos 14(1):55–62

    Google Scholar 

  49. Gupta S, Khare M, Goyal R (2007) Sick building syndrome—a case study in a multistory centrally air-conditioned building in the Delhi City. Build Environ 42(8):2797–2809

    Article  Google Scholar 

  50. Wargocki P, Wyon DP, Baik YK, Clausen G, Fanger PO (1999) Perceived air quality, sick building syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor Air 9(3):165–179

    CAS  Google Scholar 

  51. Seppanen O, Fisk WJ, Lei QH (2006) Effect of temperature on task performance in office environment. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley. LBNL-60946

    Google Scholar 

  52. Bekö G, Clausen G, Weschler CJ (2008) Is the use of particle air filtration justified? Costs and benefits of filtration with regard to health effects, building cleaning and occupant productivity. Build Environ 43(10):1647–1657

    Google Scholar 

  53. Richardson G, Eick S, Jones R (2005) How is the indoor environment related to asthma?: literature review. J Adv Nurs 52(3):328–339

    Google Scholar 

  54. Watanabe M et al (1995) Removal of mite allergens from blankets: comparison of dry cleaning and hot water washing. J Allergy Clin Immunol 96(6):1010–1012

    CAS  Google Scholar 

  55. Custovic A et al (2000) Synthetic pillows contain higher levels of cat and dog allergen than feather pillows. Pediatr Allergy Immunol 11(2):71–73

    CAS  Google Scholar 

  56. Nishioka K, Yasueda H, Saito H (1998) Preventive effect of bedding encasement with microfine fibers on mite sensitization. J Allergy Clin Immunol 101(1):28–32

    CAS  Google Scholar 

  57. Sporik R et al (1998) The Melbourne house dust mite study: long-term efficacy of house dust mite reduction strategies. J Allergy Clin Immunol 101(4):6

    Google Scholar 

  58. Oosting A-J et al (2002) Effect of mattress encasings on atopic dermatitis outcome measures in a double-blind, placebo-controlled study: the Dutch mite avoidance study. J Allergy Clin Immunol 110(3):500–506

    Google Scholar 

  59. PAW PDSA Animal Wellbeing Report (2018) The people’s dispensary for sick animals, 2018

    Google Scholar 

  60. Custovic A, Chapman MS (1997) Indoor allergens as a risk factor for asthma. Asthma 8:1–21

    Google Scholar 

  61. Sedlbauer K (2001). Prediction of mould fungus formation on the surface of and inside building components. Fraunhofer Institute for Building Physics

    Google Scholar 

  62. Bernstein JA et al (2008) The health effects of nonindustrial indoor air pollution. J Allergy Clin Immunol 121(3):585–591

    CAS  Google Scholar 

  63. Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44(9):1689–1699

    CAS  Google Scholar 

  64. Sundell J et al (2011) Ventilation rates and health: multidisciplinary review of the scientific literature. Indoor Air 21(3):191–204

    CAS  Google Scholar 

  65. Xu Y, Zhang J (2011) Understanding SVOCs. Mechanical and aerospace engineering. ASHRAE J 53(12):121–125

    Google Scholar 

  66. World Health Organization (ed) (2010) Who guidelines for indoor air quality: selected pollutants. WHO, Copenhagen

    Google Scholar 

  67. Suh HH, Bahadori T, Vallarino J, Spengler JD (2000) Criteria air pollutants and toxic air pollutants. Environ Health Perspect 108(Suppl 4):625–633

    CAS  Google Scholar 

  68. Board on Population Health and Public Health Practice; Health and Medicine Division; National Academies of Sciences, Engineering, and Medicine (2016) Sources of indoor particulate matter. National Academies Press, Washington, DC

    Google Scholar 

  69. Health – United Nations Sustainable Development. [Online]. Available https://www.un.org/sustainabledevelopment/health/. Accessed 23 Mar 2019

  70. Persily A (2015) Challenges in developing ventilation and indoor air quality standards: the story of ASHRAE standard 62. Build Environ 91:61–69

    Article  Google Scholar 

  71. Shendell DG, Prill R, Fisk WJ, Apte MG, Blake D, Faulkner D (2004) Associations between classroom CO2 concentrations and student attendance in Washington and Idaho. Indoor Air 14(5):333–341

    Article  CAS  Google Scholar 

  72. Gaihre S, Semple S, Miller J, Fielding S, Turner S (2014) Classroom carbon dioxide concentration, school attendance, and educational attainment. J Sch Health 84(9):569–574

    Article  Google Scholar 

  73. Persily AK (1997) Evaluating building IAQ and ventilation with indoor carbon dioxide. No. CONF-970668. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta

    Google Scholar 

  74. Labban O, Chen T, Ghoniem AF, Lienhard JH, Norford LK (2017) Next-generation HVAC: prospects for and limitations of desiccant and membrane-based dehumidification and cooling. Appl Energy 200:330–346

    Article  Google Scholar 

  75. HVAC energy efficiency | resources & guides | carbon trust. [Online]. Available https://www.carbontrust.com/resources/guides/energy-efficiency/heating-ventilation-and-air-conditioning-hvac/#hvac-overview. Accessed 22 Mar 2019

  76. Sidheswaran MA, Destaillats H, Sullivan DP, Cohn S, Fisk WJ (2012) Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters. Build Environ 47:357–367

    Article  Google Scholar 

  77. Carl Ian Graham PE (2016) High-performance HVAC. WBDG – whole building design guide. [Online]. Available http://www.wbdg.org/resources/high-performance-hvac. Accessed 22 Mar 2019

  78. Heat pump. [Online]. Available http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/heatpump.html#c3. Accessed 25 Mar 2019

  79. Guerreiro C, González Ortiz A, de Leeuw F, Viana M, Colette A, European Environment Agency (2018) Air quality in Europe – 2018 report

    Google Scholar 

  80. Indoor air quality: removal of particulate matter and gaseous pollutants, China – INFUSER. [Online]. Available https://infuser.eu/case/indoor-air-quality-removal-particulate-matter-gaseous-pollutants-china/. Accessed 25 Mar 2019

  81. Naturlig Ventilation (2005) Hans Thorkild Jensen, Undervisningsnotat BYG-DTU U-058. Technical University of Denmark, ISSN 1601-8605

    Google Scholar 

  82. Heiselberg P, Dam H, Sørensen LC, Nielsen PV, Svidt K (1999) Characteristics of air flow through windows. International Energy Agency, Annex 35

    Google Scholar 

  83. Natural ventilation reduces energy consumption. [Online]. Available https://www.windowmaster.com/solutions/natural-ventilation. Accessed 25 Mar 2019

  84. El Fouih Y, Stabat P, Rivière P, Hoang P, Archambault V (2012) Adequacy of air-to-air heat recovery ventilation system applied in low energy buildings. Energ Buildings 54:29–39

    Google Scholar 

  85. Menéndez-Díaz JA, Martín-Gullón I (2006) Chapter 1: Types of carbon adsorbents and their production. In TJ Bandosz (ed) Interface science and technology, vol 7. Elsevier, New York, pp. 1–47

    Google Scholar 

  86. Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A (2010) A review on surface modification of activated carbon for carbon dioxide adsorption. J Anal Appl Pyrolysis 89(2):143–151

    Article  CAS  Google Scholar 

  87. Sleiman M, Conchon P, Ferronato C, Chovelon J-M (2009) Photocatalytic oxidation of toluene at indoor air levels (ppbv): towards a better assessment of conversion, reaction intermediates and mineralization. Appl Catal B Environ 86(3):159–165

    Article  CAS  Google Scholar 

  88. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52(10):3581–3599

    Article  CAS  Google Scholar 

  89. Truffier-Boutry D et al (2017) Characterization of photocatalytic paints: a relationship between the photocatalytic properties – release of nanoparticles and volatile organic compounds. Environ Sci Nano 4(10):1998–2009

    Article  CAS  Google Scholar 

  90. Awfa D, Ateia M, Fujii M, Johnson MS, Yoshimura C (2018) Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: a critical review of recent literature. Water Res 142:26–45

    CAS  Google Scholar 

  91. Gandolfo A et al (2015) The effectiveness of indoor photocatalytic paints on NOx and HONO levels. Appl Catal B Environ 166–167:84–90

    Google Scholar 

  92. Gallus M et al (2015) Photocatalytic de-pollution in the Leopold II tunnel in Brussels: NOx abatement results. Build Environ 84:125–133

    Google Scholar 

  93. Wolverton BC, Johnson A, Bounds K (1989) Interior landscape plants for indoor air pollution abatement, NASA

    Google Scholar 

  94. Wolverton BC, Mcdonald RC, Watkins EA (1984) Foliage plants for removing indoor air pollutants from energy-efficient homes. Econ Bot 38(2):224–228

    CAS  Google Scholar 

  95. Wolverton BC, Wolverton JD (1993) Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. J Miss Acad Sci 38(2):11–15

    Google Scholar 

  96. Yang DS, Pennisi SV, Son K-C, Kays SJ (2009) Screening indoor plants for volatile organic pollutant removal efficiency. HortScience 44(5):1377–1381

    Google Scholar 

  97. Wood RA, Burchett MD, Alquezar R, Orwell RL, Tarran J, Torpy F (2006) The potted-plant microcosm substantially reduces indoor air VOC pollution: I. Office field-study. Water Air Soil Pollut 175(1–4):163–180

    CAS  Google Scholar 

  98. Pegas PN, Alves CA, Nunes T, Bate-Epey EF, Evtyugina M, Pio CA (2012) Could houseplants improve indoor air quality in schools? J Toxic Environ Health A 75(22–23):1371–1380

    CAS  Google Scholar 

  99. Cao X, Dai X, Liu J (2016) Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energ Buildings 128:198–213

    Google Scholar 

  100. ENERGY STAR | The simple choice for energy efficiency. [Online]. Available https://www.energystar.gov/. Accessed 25 Mar 2019

  101. LEED green building certification | USGBC. [Online]. Available https://new.usgbc.org/leed. Accessed 25 Mar 2019

  102. Diamond R, Opitz M, Hicks T, Von Neida B, Herrera S (2006) Evaluating the energy performance of the first generation of LEED-certified commercial buildings. Lawrence Berkeley National Lab (LBNL), Berkeley. LBNL-59853

    Google Scholar 

  103. Green Lighthouse, Velux Model Home 2020, Velux

    Google Scholar 

  104. Green Lighthouse | Bygningsstyrelsen. [Online]. Available https://www.bygst.dk/(X(1)S(yyygsd2qpgzep4a23gwmncso))/projekter/green-lighthouse/?AspxAutoDetectCookieSupport=1. Accessed 25 Mar 2019

  105. HOFOR (2015) District heating in Copenhagen: energy-efficient, low-carbon and cost-effective. district_heating_in_cph.pdf

    Google Scholar 

  106. Ellermann T, Nygaard J, Nøjgaard JK, Nordstrøm C, Brandt J, Christensen J, Ketzel M, Massling A, Bossi R, Jensen SS (2018) The Danish air quality monitoring programme annual summary, Publication number 281, Aarhus University. ISBN 978-87-7156-343-6

    Google Scholar 

  107. Yip S-F (1972) Daylighting in architectural design. Thesis, McGill University

    Google Scholar 

  108. Cities – United Nations Sustainable Development Action 2015. [Online]. Available https://www.un.org/sustainabledevelopment/cities/. Accessed 25 Mar 2019

  109. Gandolfo A, Marque S, Temime-Roussel B, Gemayel R, Wortham H, Truffier-Boutry D, Bartolomei V, Gligorovski S (2018) Unexpectedly High Levels of Organic Compounds Released by Indoor Photocatalytic Paints. Environmental Science and Technology 52(19):11328–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Stanley Johnson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hasager, F., Bjerregaard, J.D., Bonomaully, J., Knap, H., Afshari, A., Johnson, M.S. (2021). Indoor Air Quality: Status and Standards. In: Goodsite, M.E., Johnson, M.S., Hertel, O. (eds) Air Pollution Sources, Statistics and Health Effects. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0596-7_1097

Download citation

Publish with us

Policies and ethics