Skip to main content

Multipolarization Dark-Field Imaging of Single Endosomes in Microfluidic Neuronal Culture for Simultaneous Orientation and Displacement Tracking

  • Protocol
  • First Online:
Single Molecule Microscopy in Neurobiology

Part of the book series: Neuromethods ((NM,volume 154))

  • 563 Accesses

Abstract

Robust axonal transport of endosomes is critical for neuronal function. Increasingly it is appreciated that single axonal endosomes are transported by teams of molecular motors. How these motors are regulated remains poorly understood. In part, this is due to the high variability between individual endosomes. Conventional imaging approaches also only track the position of endosomes, effectively measuring one variable in a team of several motors. Here we describe how to image transport of individual axonal endosomes using multipolarization dark-field microscopy to measure both the position and the orientation of axonal endosomes. This is accomplished in a high-throughput manner by combining the imaging approach with microfluidic cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Craig A, Banker G (1994) Neuronal polarity. Annu Rev Neurosci 17:267–310

    Article  CAS  PubMed  Google Scholar 

  2. Chowdary PD, Che DL, Cui B (2012) Neurotrophin signaling via long-distance axonal transport. Annu Rev Phys Chem 63:571–594

    Article  CAS  PubMed  Google Scholar 

  3. Howe CL, Mobley WC (2004) Signaling endosome hypothesis: a cellular mechanism for long distance communication. J Neurobiol 58:207–216

    Article  PubMed  Google Scholar 

  4. Maday S, Wallace KE, Holzbaur ELF (2012) Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 196:407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang K et al (2013) Defective axonal transport of Rab7 GTPase results in dysregulated trophic signaling. J Neurosci 33:7451–7462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldstein LSB (2012) Axonal transport and neurodegenerative disease: can we see the elephant? Prog Neurobiol 99:186–190

    Article  CAS  PubMed  Google Scholar 

  7. Her L-S, Goldstein LSB (2008) Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin. J Neurosci 28:13662–13672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Florenzano F (2012) Localization of axonal motor molecules machinery in neurodegenerative disorders. Int J Mol Sci 13:5195–5206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brady ST, Morfini GA (2017) Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 105:273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cui B et al (2007) One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci U S A 104:13666–13671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hendricks AG et al (2010) Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr Biol 20:697–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caviston JP, Holzbaur ELF (2009) Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol 19:147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deinhardt K et al (2006) Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 52:293–305

    Article  CAS  PubMed  Google Scholar 

  14. Dixit R, Ross JL, Goldman YE, Holzbaur ELF (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319:1086–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakata T, Niwa S, Okada Y, Perez F, Hirokawa N (2011) Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. J Cell Biol 194:245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Janke C, Kneussel M (2010) Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci 33:362–372

    Article  CAS  PubMed  Google Scholar 

  17. Shubeita GT et al (2008) Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135:1098–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu Q, Li J, Zhang M (2014) Cargo recognition and cargo-mediated regulation of unconventional myosins. Acc Chem Res 47:3061. https://doi.org/10.1021/ar500216z

    Article  CAS  PubMed  Google Scholar 

  19. Welte MA, Gross SP, Postner M, Block SM, Wieschaus EF (1998) Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92:547–557

    Article  CAS  PubMed  Google Scholar 

  20. Chowdary PD, Che DL, Zhang K, Cui B (2015) Retrograde NGF axonal transport—motor coordination in the unidirectional motility regime. Biophys J 108:2691–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A 74:4516–4519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taylor AM et al (2003) Microfluidic multicompartment device for neuroscience research. Langmuir 19:1551–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nan X, Sims PA, Xie XS (2008) Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. Chemphyschem 9:707–712

    Article  CAS  PubMed  Google Scholar 

  24. Ortega Arroyo J, Cole D, Kukura P (2016) Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging. Nat Protoc 11:617–633

    Article  CAS  PubMed  Google Scholar 

  25. Soppina V, Rai AK, Ramaiya AJ, Barak P, Mallik R (2009) Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc Natl Acad Sci U S A 106:19381–19386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gu Y et al (2012) Rotational dynamics of cargos at pauses during axonal transport. Nat Commun 3:1030

    Article  PubMed  CAS  Google Scholar 

  27. Kaplan L, Ierokomos A, Chowdary P, Bryant Z, Cui B (2018) Rotation of endosomes demonstrates coordination of molecular motors during axonal transport. Sci Adv 4:e1602170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang X et al (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang G, Sun W, Luo Y, Fang N (2010) Resolving rotational motions of nano-objects in engineered environments and live cells with gold nanorods and differential interference contrast microscopy. J Am Chem Soc 132:16417–16422

    Article  CAS  PubMed  Google Scholar 

  30. Li T et al (2012) Three-dimensional orientation sensors by defocused imaging of gold nanorods through an ordinary wide-field microscope. ACS Nano 6:1268–1277

    Article  CAS  PubMed  Google Scholar 

  31. Xiao L, Qiao Y, He Y, Yeung ES (2010) Three dimensional orientational imaging of nanoparticles with dark-field microscopy. Anal Chem 82:5268–5274

    Article  CAS  PubMed  Google Scholar 

  32. Sönnichsen C, Alivisatos AP (2005) Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett 5:301–304

    Article  PubMed  CAS  Google Scholar 

  33. Boyer D, Tamarat P, Maali A, Lounis B, Orrit M (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–1163

    Article  CAS  PubMed  Google Scholar 

  34. Zhang K et al (2010) Single-molecule imaging of NGF axonal transport in microfluidic devices. Lab Chip 10:2566–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park JW, Vahidi B, Taylor AM, Rhee SW, Jeon NL (2006) Microfluidic culture platform for neuroscience research. Nat Protoc 1:2128–2136

    Article  CAS  PubMed  Google Scholar 

  36. Liu R, Lin G, Xu H (2013) An efficient method for dorsal root ganglia neurons purification with a one-time anti-mitotic reagent treatment. PLoS One 8:e60558. https://doi.org/10.1371/journal.pone.0060558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dumas, M., Schwab, M.E. & Thoenen, H. (1979). Retrograde axonal transport of specific macromolecules as a tool for characterizing nerve terminal membranes. J. Neurobiol., 10: 179–197. https://doi.org/10.1002/neu.480100207

  38. Chowdary PD, Kaplan L, Che DL, Cui B (2018) Dynamic clustering of dyneins on axonal endosomes: evidence from high-speed dark-field imaging. Biophys J 115:230–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang K, Osakada Y, Xie W, Cui B (2011) Automated image analysis for tracking cargo transport in axons. Microsc Res Tech 74:605–613

    Article  CAS  PubMed  Google Scholar 

  40. Jaqaman K et al (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fourkas JT (2001) Rapid determination of the three-dimensional orientation of single molecules. Opt Lett 26:211–213

    Article  CAS  PubMed  Google Scholar 

  42. Yu Y, Chang S, Lee C, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664

    Article  CAS  Google Scholar 

  43. Lee H-LD, Sahl SJ, Lew MD, Moerner WE (2012) The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision. Appl Phys Lett 100:153701–1537013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kao HP, Verkman AS (1994) Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J 67:1291–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianxiao Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaplan, L., Cui, B. (2020). Multipolarization Dark-Field Imaging of Single Endosomes in Microfluidic Neuronal Culture for Simultaneous Orientation and Displacement Tracking. In: Yamamoto, N., Okada, Y. (eds) Single Molecule Microscopy in Neurobiology . Neuromethods, vol 154. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0532-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0532-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0531-8

  • Online ISBN: 978-1-0716-0532-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics