Skip to main content

Recombinant Production of Monomeric Isotope-Enriched Aggregation-Prone Peptides: Polyglutamine Tracts and Beyond

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

High solvent exposure of certain sequences located in intrinsically disordered regions (IDRs) may eventually lead to aggregation, as is the case for some low-complexity regions (LCRs) and short linear motifs (SLiMs). In particular, polyglutamine (polyQ) tracts are LCRs of variable length highly enriched in glutamine residues. They are common in transcription factors, and their length can have an impact on transcriptional activity. In nine proteins, polyQ tract expansions beyond specific thresholds cause nine neurodegenerative diseases, and aggregates formed by the protein harboring the polyQ tract can be detected in affected individuals. A structural characterization of polyQ proteins in their monomeric form is key to understand how their expansion can affect their aggregation propensity. In this regard, nuclear magnetic resonance (NMR) spectroscopy can provide high-resolution structural information. Here, we present a protocol to prepare monomeric samples of isotope-enriched short helical polyQ peptides based on the sequence of the androgen receptor (AR) suitable for NMR characterization and suggest different ways to adapt it for the production and monomerization of other relatively short IDR sequences and SLiMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fiumara F, Fioriti L, Kandel ER, Hendrickson WA (2010) Essential role of coiled coils for aggregation and activity of Q/N-rich prions and PolyQ proteins. Cell 143:1121–1135

    Article  CAS  Google Scholar 

  2. Jee M, Hoon M, Bagley JA et al (2018) Coiled-coil structure-dependent interactions between polyQ proteins and Foxo lead to dendrite pathology and behavioral defects. Proc Natl Acad Sci U S A 115:10748–10757

    Article  Google Scholar 

  3. Peskett TR, Driscoll JO, Patani R et al (2018) A liquid to solid phase transition underlying pathological huntingtin Exon1 aggregation. Mol Cell 70:588–601

    Article  CAS  Google Scholar 

  4. Posey AE, Ruff KM, Harmon TS et al (2018) Profilin reduces aggregation and phase separation of huntingtin N-terminal fragments by preferentially binding to soluble monomers and oligomers. J Biol Chem 293:3734–3746

    Article  CAS  Google Scholar 

  5. Langdon EM, Qiu Y, Ghanbari Niaki A et al (2018) mRNA structure determines specificity of a polyQ-driven phase separation. Science 360:922–927

    Article  CAS  Google Scholar 

  6. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    Article  CAS  Google Scholar 

  7. La Spada AR, Wilson EM, Lubahn DB et al (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79

    Article  Google Scholar 

  8. Li M, Miwa S, Kobayashi Y et al (1998) Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol 44:249–254

    Article  CAS  Google Scholar 

  9. Bratt O, Borg Å, Kristoffersson U et al (1999) CAG repeat length in the androgen receptor gene is related to age at diagnosis of prostate cancer and response to endocrine therapy, but not to prostate cancer risk. Br J Cancer 81:672–676

    Article  CAS  Google Scholar 

  10. Giovannucci E, Stampfer MJ, Krithivas K et al (1997) The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci U S A 94:3320–3323

    Article  CAS  Google Scholar 

  11. Newcombe EA, Ruff KM, Sethi A et al (2018) Tadpole-like conformations of huntingtin exon 1 are characterized by conformational heterogeneity that persists regardless of polyglutamine length. J Mol Biol 430:1442–1458

    Article  CAS  Google Scholar 

  12. Warner JB, Ruff KM, Tan PS et al (2017) Monomeric huntingtin exon 1 has similar overall structural features for wild-type and pathological polyglutamine lengths. J Am Chem Soc 139:14456–14469

    Article  CAS  Google Scholar 

  13. Eftekharzadeh B, Piai A, Chiesa G et al (2016) Sequence context influences the structure and aggregation behavior of a PolyQ tract. Biophys J 110:2361–2366

    Article  CAS  Google Scholar 

  14. Frydman J, Frydman L (2017) Structure and dynamics of the huntingtin exon-1 N-terminus: a solution NMR perspective. J Am Chem Soc 139:1168–1176

    Article  Google Scholar 

  15. Urbanek A, Morato A, Delaforge E et al (2018) A general strategy to access structural information at atomic resolution in polyglutamine homorepeats. Angew Chem Int Ed Engl 57:3598–3601

    Article  CAS  Google Scholar 

  16. Kotler SA, Tugarinov V, Schmidt T et al (2019) Probing initial transient oligomerization events facilitating huntingtin fibril nucleation at atomic resolution by relaxation-based NMR. Proc Natl Acad Sci 116:3562–3571

    Article  CAS  Google Scholar 

  17. Escobedo A, Topal B, Kunze MBA et al (2019) Side chain to main chain hydrogen bonds stabilize a polyglutamine helix in a transcription factor. Nat Commun 10:2034

    Article  Google Scholar 

  18. Hellstrand E, Boland B, Walsh DM, Linse S (2010) Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem Neurosci 1:13–18

    Article  CAS  Google Scholar 

  19. Jayaraman M, Thakur AK, Kar K et al (2011) Assays for studying nucleated aggregation of polyglutamine proteins. Methods 53:246–254

    Article  CAS  Google Scholar 

  20. Chen S, Berthelier V, Hamilton JB et al (2002) Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41:7391–7399

    Article  CAS  Google Scholar 

  21. Baker EG, Bartlett GJ, Crump MP et al (2015) Local and macroscopic electrostatic interactions in single α-helices. Nat Chem Biol 11:221

    Article  CAS  Google Scholar 

  22. Kwan AH, Mobli M, Gooley PR et al (2011) Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS J 278:687–703

    Article  CAS  Google Scholar 

  23. Bieri M, Kwan AH, Mobli M et al (2011) Macromolecular NMR spectroscopy for the non-spectroscopist: beyond macromolecular solution structure determination. FEBS J 278:704–715

    Article  CAS  Google Scholar 

  24. Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    CAS  Google Scholar 

  25. Grzesiek S, Bax A (1992) An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. J Magn Reson 99:201–207

    CAS  Google Scholar 

  26. Bermel W, Bertini I, Felli IC et al (2006) Novel 13C direct detection experiments, including extension to the third dimension, to perform the complete assignment of proteins. J Magn Reson 178:56–64

    Article  CAS  Google Scholar 

  27. Chhabra S, Fischer P, Takeuchi K et al (2018) 15N detection harnesses the slow relaxation property of nitrogen: delivering enhanced resolution for intrinsically disordered proteins. Proc Natl Acad Sci U S A 115:1710–1719

    Article  Google Scholar 

  28. Marion D, Driscoll PC, Kay LE et al (1989) Overcoming the overlap problem in the assignment of proton NMR spectra of larger proteins by use of three-dimensional heteronuclear proton-nitrogen-15 Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy. Biochemistry 28:6150–6156

    Article  CAS  Google Scholar 

  29. Montelione GT, Lyons BA, Emerson SD, Tashiro M (1992) An efficient triple resonance experiment using carbon-13 isotropic mixing for determining sequence-specific resonance assignments of isotopically-enriched proteins. J Am Chem Soc 114:10974–10975

    Article  CAS  Google Scholar 

  30. Grzesiek S, Anglister J, Bax A (1993) Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization. J Magn Reson Ser B 101:114–119

    Article  CAS  Google Scholar 

  31. Chen K, Tjandra N (2012) In: Zhu G (ed) The use of residual dipolar coupling in studying proteins by NMR BT—NMR of proteins and small biomolecules. Springer, Berlin, pp 47–67

    Google Scholar 

  32. Pell AJ, Pintacuda G, Grey CP (2019) Paramagnetic NMR in solution and the solid state. Prog Nucl Magn Reson Spectrosc 111:1–271

    Article  CAS  Google Scholar 

  33. Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Salvatella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Escobedo, A., Chiesa, G., Salvatella, X. (2020). Recombinant Production of Monomeric Isotope-Enriched Aggregation-Prone Peptides: Polyglutamine Tracts and Beyond. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics