Skip to main content

Imaging and Electrophysiology of Individual Neurites Functionally Isolated in Microchannels

  • Protocol
  • First Online:
Neurohistology and Imaging Techniques

Part of the book series: Neuromethods ((NM,volume 153))

  • 964 Accesses

Abstract

The present chapter describes fabrication and utilization of neurite-isolation microelectrode arrays (NI-MEAs). The neurite-isolation device makes it possible to functionally isolate individual neurites from neuronal cell bodies as the neurites are forced to grow into narrow microchannels. Being microfluidic setups, the NI devices can be conveniently employed to carry out laser axotomy, study retrograde/anterograde transport in single axons, investigate the mutual effects of soluble factors (e.g., amyloid-β peptides) secreted by different neuronal populations (each “housed” in a different macrochannel), or to create the so-called axonal diodes imposing unidirectional axonal connectivity, to name but a few options. A separately made MEA is assembled with the NI device so that each of its microchannels is connected to one microelectrode. Unlike in patch-clamp, electrophysiology performed with the aid of NI-MEA is “massively parallel” as many neurites can be recorded simultaneously, and the data acquisition is noninvasive as the electrodes are not forced into a physical contact with the neurites. The capability of such setup is demonstrated here by recording the effects of different concentrations of nerve growth factor (NGF) on the electrical activity of individual neurites of superior cervical ganglions in primary culture, during their outgrowth into the microchannels. Simultaneous microscopic (e.g., immunofluorescence) observation of multiple neurites and their somata is an inherent extra option permitting to correlate their electrical activity with other physiological parameters, recorded by optical means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AID:

Axon isolation device

Ig:

Immunoglobulin

iPSC:

Induced pluripotent stem cells

MEA:

Micro/Multielectrode array

NGF:

Nerve growth factor

NI-MEA:

Neurite-isolation MEA

PDMS:

Polydimethylsiloxane

PBS:

Phosphate buffered saline

SCG:

Superior cervical ganglion

References

  1. Fattahi P, Yang G, Kim G, Abidian MR (2014) A review of organic and inorganic biomaterials for neural interfaces. Adv Mater 26(12):1846–1885. https://doi.org/10.1002/adma.201304496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giordano G, Costa L (2011) Primary neurons in culture and neuronal cell lines for in vitro neurotoxicological studies. In: Costa LG, Giordano G, Guizzetti M (eds) In vitro neurotoxicology. (Meth Mol Biol, vol 758. Humana Press, Totowa, NJ, pp 13–27. https://doi.org/10.1007/978-1-61779-170-3_2

    Chapter  Google Scholar 

  3. Biedler JL, Helson L, Spengler BA (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33(11):2643–2652. https://www.ncbi.nlm.nih.gov/pubmed/4748425

    CAS  PubMed  Google Scholar 

  4. Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38(11):3751–3757. https://www.ncbi.nlm.nih.gov/pubmed/29704

    CAS  PubMed  Google Scholar 

  5. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73(7):2424–2428. https://doi.org/10.1073/pnas.73.7.2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hilgenberg LG, Smith MA (2007) Preparation of dissociated mouse cortical neuron cultures. J Vis Exp 10:562. https://doi.org/10.3791/562

    Article  Google Scholar 

  7. Kramer D, Minichiello L (2010) Cell culture of primary cerebellar granule cells. Meth Mol Biol 633:233–239. https://doi.org/10.1007/978-1-59745-019-5_17

    Article  CAS  Google Scholar 

  8. Mao L, Wang J (2003) Primary striatal neuronal culture. In: Wang J (ed) Drugs of abuse. (Meth Mol Med, vol 79. Humana Press, Totowa, NJ, pp 379–386. https://doi.org/10.1385/1-59259-358-5:379

    Chapter  Google Scholar 

  9. Zeitelhofer M, Vessey JP, Xie Y, Tubing F, Thomas S, Kiebler M, Dahm R (2007) High-efficiency transfection of mammalian neurons via nucleofection. Nat Protoc 2(7):1692–1704. https://doi.org/10.1038/nprot.2007.226

    Article  CAS  PubMed  Google Scholar 

  10. De Biasi M (2002) Nicotinic receptor mutant mice in the study of autonomic function. Curr Drug Targets CNS Neurol Disord 1(4):331–336. https://doi.org/10.2174/1568007023339148

    Article  PubMed  Google Scholar 

  11. Fischer H, Orr-Urtreger A, Role LW, Huck S (2005) Selective deletion of the α5 subunit differentially affects somatic-dendritic versus axonally targeted nicotinic ACh receptors in mouse. J Physiol 563(Pt 1):119–137. https://doi.org/10.1113/jphysiol.2004.075788

    Article  CAS  PubMed  Google Scholar 

  12. Putz G, Kristufek D, Orr-Urtreger A, Changeux JP, Huck S, Scholze P (2008) Nicotinic acetylcholine receptor-subunit mRNAs in the mouse superior cervical ganglion are regulated by development but not by deletion of distinct subunit genes. J Neurosci Res 86(5):972–981. https://doi.org/10.1002/jnr.21559

    Article  CAS  PubMed  Google Scholar 

  13. David R, Ciuraszkiewicz A, Simeone X, Orr-Urtreger A, Papke RL, McIntosh JM, Huck S, Scholze P (2010) Biochemical and functional properties of distinct nicotinic acetylcholine receptors in the superior cervical ganglion of mice with targeted deletions of nAChR subunit genes. Eur J Neurosci 31(6):978–993. https://doi.org/10.1111/j.1460-9568.2010.07133.x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Scholze P, Ciuraszkiewicz A, Groessl F, Orr-Urtreger A, McIntosh JM, Huck S (2011) α4β2 nicotinic acetylcholine receptors in the early postnatal mouse superior cervical ganglion. Dev Neurobiol 71(5):390–399. https://doi.org/10.1002/dneu.20870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ciuraszkiewicz A, Schreibmayer W, Platzer D, Orr-Urtreger A, Scholze P, Huck S (2013) Single-channel properties of α3β4, α3β4α5 and α3β4β2 nicotinic acetylcholine receptors in mice lacking specific nicotinic acetylcholine receptor subunits. J Physiol 591(Pt13):3271–3288. https://doi.org/10.1113/jphysiol.2012.246595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blumenfeld H (2003) From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy. Epilepsia 44:7–15. https://doi.org/10.1046/j.1528-1157.44.s.2.2.x

    Article  CAS  PubMed  Google Scholar 

  17. Luna LG (1968) Manual of histologic staining methods of the Armed Forces Institute of Pathology. McGraw-Hill (Blakiston Div.), New York. https://archive.org/details/ManualHistologicalStaining

    Google Scholar 

  18. Coons AH, Creech HJ, Jones RN (1941) Immunological properties of an antibody containing a fluorescent Group. Exp Biol Med (Maywood) 47(2):200–202. https://doi.org/10.3181/00379727-47-13084p

    Article  CAS  Google Scholar 

  19. Volgyi B, Bloomfield SA (2002) Axonal neurofilament-H immunolabeling in the rabbit retina. J Comp Neurol 453(3):269–279. https://doi.org/10.1002/cne.10392

    Article  PubMed  Google Scholar 

  20. Seifert U, Hartig W, Grosche J, Bruckner G, Riedel A, Brauer K (1998) Axonal expression sites of tyrosine hydroxylase, calretinin- and calbindin-immunoreactivity in striato-pallidal and septal nuclei of the rat brain: a double-immunolabelling study. Brain Res 795(1–2):227–246. https://doi.org/10.1016/S0006-8993(98)00298-4

    Article  CAS  PubMed  Google Scholar 

  21. Haykal-Coates N, O'Callaghan JP, Reinhard JF Jr, Jensen KF (1991) Pargyline and γ­butyrolactone enhance tyrosine hydroxylase immunostaining of nigrostriatal axons. Brain Res 556(2):353–357. https://doi.org/10.1016/0006-8993(91)90330-X

    Article  CAS  PubMed  Google Scholar 

  22. Hechler D, Nitsch R, Hendrix S (2006) Green-fluorescent-protein-expressing mice as models for the study of axonal growth and regeneration in vitro. Brain Res Rev 52(1):160–169. https://doi.org/10.1016/j.brainresrev.2006.01.005

    Article  CAS  PubMed  Google Scholar 

  23. Zhou XY, Ji M, Liu JY, Tan MQ (2007) GFP gene transfection of dendritic cells mediated by recombinated adeno-associated virus. J Centr South Univ (Med Sci) 32(5):742–746. (in Chinese). https://www.ncbi.nlm.nih.gov/pubmed/18007063

  24. van den Pol AN, Spencer DD (2000) Differential neurite growth on astrocyte substrates: interspecies facilitation in green fluorescent protein-transfected rat and human neurons. Neuroscience 95(2):603–616. https://doi.org/10.1016/s0306-4522(99)00430-3

    Article  PubMed  Google Scholar 

  25. Cassereau J, Nicolas G, Lonchampt P, Pinier M, Barthelaix A, Eyer J, Letournel F (2013) Axonal regeneration is compromised in NFH-LacZ transgenic mice but not in NFH-GFP mice. Neuroscience 228:101–108. https://doi.org/10.1016/j.neuroscience.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  26. Kameda H, Furuta T, Matsuda W, Ohira K, Nakamura K, Hioki H, Kaneko T (2008) Targeting green fluorescent protein to dendritic membrane in central neurons. Neurosci Res 61(1):79–91. https://doi.org/10.1016/j.neures.2008.01.014

    Article  CAS  PubMed  Google Scholar 

  27. Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI (1998) Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci 18(7):2697–2708. https://www.ncbi.nlm.nih.gov/pubmed/9502827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hartline FF (1979) Biological applications for voltage sensitive dyes. Science 203(4384):992–994. https://doi.org/10.1126/science.424731

    Article  CAS  PubMed  Google Scholar 

  29. Ross WN, Reichardt LF (1979) Species-specific effects on the optical signals of voltage-sensitive dyes. J Membr Biol 48(4):343–356. https://doi.org/10.1007/BF01869445

    Article  CAS  PubMed  Google Scholar 

  30. Baker BJ, Kosmidis EK, Vucinic D, Falk CX, Cohen LB, Djurisic M, Zecevic D (2005) Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol Neurobiol 25(2):245–282. https://doi.org/10.1007/s10571-005-3059-6

    Article  CAS  PubMed  Google Scholar 

  31. Zochowski M, Wachowiak M, Falk CX, Cohen LB, Lam YW, Antic S, Zecevic D (2000) Imaging membrane potential with voltage-sensitive dyes. Biol Bull 198(1):1–21. https://doi.org/10.2307/1542798

    Article  CAS  PubMed  Google Scholar 

  32. Foust A, Popovic M, Zecevic D, McCormick DA (2010) Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. J Neurosci 30(20):6891–6902. https://doi.org/10.1523/jneurosci.0552-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Popovic M, Gao X, Zecevic D (2012) Voltage-sensitive dye recording from axons, dendrites and dendritic spines of individual neurons in brain slices. J Vis Exp 69:e4261. https://doi.org/10.3791/4261

    Article  CAS  Google Scholar 

  34. Grinvald A, Ross WN, Farber I (1981) Simultaneous optical measurements of electrical activity from multiple sites on processes of cultured neurons. Proc Natl Acad Sci U S A 78(5):3245–3249. https://doi.org/10.1073/pnas.78.5.3245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kinoshita M, Ueda R, Kojima S, Sato K, Watanabe M, Urano A, Ito E (2002) Multiple-site optical recording for characterization of functional synaptic organization of the optic tectum of rainbow trout. Eur J Neurosci 16(5):868–876. https://doi.org/10.1046/j.1460-9568.2002.02160.x

    Article  PubMed  Google Scholar 

  36. Tsytsarev V, Liao LD, Kong KV, Liu YH, Erzurumlu RS, Olivo M, Thakor NV (2014) Recent progress in voltage-sensitive dye imaging for neuroscience. J Nanosci Nanotechnol 14(7):4733–4744. https://doi.org/10.1166/jnn.2014.9531

    Article  CAS  PubMed  Google Scholar 

  37. Mao C, Kisaalita WS (2004) Determination of resting membrane potential of individual neuroblastoma cells (IMR-32) using a potentiometric dye (TMRM) and confocal microscopy. J Fluoresc 14(6):739–743. https://doi.org/10.1023/B:JOFL.0000047224.41328.f8

    Article  CAS  PubMed  Google Scholar 

  38. Maric D, Maric I, Smith SV, Serafini R, Hu Q, Barker JL (1998) Potentiometric study of resting potential, contributing K+ channels and the onset of Na+ channel excitability in embryonic rat cortical cells. Eur J Neurosci 10(8):2532–2546. https://doi.org/10.1046/j.1460-9568.1998.00284.x

    Article  CAS  PubMed  Google Scholar 

  39. Bullen A, Saggau P (1999) High-speed, random-access fluorescence microscopy: II. Fast quantitative measurements with voltage-sensitive dyes. Biophys J 76(4):2272–2287. https://doi.org/10.1016/s0006-3495(99)77383-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mohajerani MH, McVea DA, Fingas M, Murphy TH (2010) Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J Neurosci 30(10):3745–3751. https://doi.org/10.1523/jneurosci.6437-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kibler AB, Jamieson BG, Durand DM (2012) A high aspect ratio microelectrode array for mapping neural activity in vitro. J Neurosci Methods 204(2):296–305. https://doi.org/10.1016/j.jneumeth.2011.11.027

    Article  PubMed  Google Scholar 

  42. Johansson F, Wallman L, Danielsen N, Schouenborg J, Kanje M (2009) Porous silicon as a potential electrode material in a nerve repair setting: Tissue reactions. Acta Biomater 5(6):2230–2237. https://doi.org/10.1016/j.actbio.2009.02.010

    Article  CAS  PubMed  Google Scholar 

  43. Renshaw S (ed) (2007) Immunohistochemistry. Scion Publishing, Bloxham

    Google Scholar 

  44. Herzog W, Weber K (1978) Fractionation of brain microtubule-associated proteins. Isolation of two different proteins which stimulate tubulin polymerization in vitro. Eur J Biochem 92(1):1–8. https://doi.org/10.1111/j.1432-1033.1978.tb12716.x

    Article  CAS  PubMed  Google Scholar 

  45. Bébarová M (2012) Advances in patch clamp technique: towards higher quality and quantity. Gen Physiol Biophys 31(2):131–140. https://doi.org/10.4149/gpb_2012_016

    Article  CAS  PubMed  Google Scholar 

  46. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544. https://www.ncbi.nlm.nih.gov/pubmed/12991237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100. https://doi.org/10.1007/BF00656997

    Article  CAS  PubMed  Google Scholar 

  48. Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch 375(2):219–228. https://doi.org/10.1007/BF00584247

    Article  CAS  PubMed  Google Scholar 

  49. Neher E, Sakmann B (1992) The patch clamp technique. Sci Am 266(3):44–51. https://doi.org/10.1038/scientificamerican0392-44

    Article  CAS  PubMed  Google Scholar 

  50. Caldwelland JH, Milton RL (1995) The loose patch voltage clamp technique. In: Boulton A, Baker G, Walz W (eds) Patch-clamp applications and protocols, Neuromethods, vol 26. Humana Press, Totowa, NJ, pp 173–192. https://doi.org/10.1385/0-89603-311-2:173

    Chapter  Google Scholar 

  51. Messerli MA, Collis LP, Smith PJS (2009) Ion trapping with fast-response ion-selective microelectrodes enhances detection of extracellular ion channel gradients. Biophys J 96(4):1597–1605. https://doi.org/10.1016/j.bpj.2008.11.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Spira ME, Hai A (2013) Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol 8(2):83–94. https://doi.org/10.1038/nnano.2012.265

    Article  CAS  PubMed  Google Scholar 

  53. Thomas CA Jr, Springer PA, Loeb GE, Berwald-Netter Y, Okun LM (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74(1):61–66. https://doi.org/10.1016/0014-4827(72)90481-8

    Article  PubMed  Google Scholar 

  54. Liu M-G, Chen X-F, He T, Li Z, Chen J (2012) Use of multi-electrode array recordings in studies of network synaptic plasticity in both time and space. Neurosci Bull 28(4):409–422. https://doi.org/10.1007/s12264-012-1251-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hutzler M, Lambacher A, Eversmann B, Jenkner M, Thewes R, Fromherz P (2006) High-resolution multitransistor array recording of electrical field potentials in cultured brain slices. J Neurophysiol 96(3):1638–1645. https://doi.org/10.1152/jn.00347.2006

    Article  CAS  PubMed  Google Scholar 

  56. Frey U, Egert U, Heer F, Hafizovic S, Hierlemann A (2009) Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens Bioelectron 24(7):2191–2198. https://doi.org/10.1016/j.bios.2008.11.028

    Article  CAS  PubMed  Google Scholar 

  57. Berdondini L, Imfeld K, Maccione A, Tedesco M, Neukom S, Koudelka-Hep M, Martinoia S (2009) Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9(18):2644–2651. https://doi.org/10.1039/b907394a

    Article  CAS  PubMed  Google Scholar 

  58. Huys R, Braeken D, Jans D, Stassen A, Collaert N, Wouters J, Loo J, Severi S, Vleugels F, Callewaert G, Verstreken K, Bartic C, Eberle W (2012) Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip. Lab Chip 12(7):1274–1280. https://doi.org/10.1039/c2lc21037a

    Article  CAS  PubMed  Google Scholar 

  59. Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9(4):R53–R78. https://doi.org/10.1088/0954-898X_9_4_001

    Article  CAS  PubMed  Google Scholar 

  60. Brown EN, Kass RE, Mitra PP (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci 7(5):456–461. https://doi.org/10.1038/nn1228

    Article  CAS  PubMed  Google Scholar 

  61. Offenhäusser A, Böcker-Meffert S, Decker T, Helpenstein R, Gasteier P, Groll J, Möller M, Reska A, Schäfer S, Schulte P, Vogt-Eisele A (2007) Microcontact printing of proteins for neuronal cell guidance. Soft Matter 3(3):290–298. https://doi.org/10.1039/B607615G

    Article  PubMed  Google Scholar 

  62. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci U S A 104(34):13574–13577. https://doi.org/10.1073/pnas.0706508104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Klemic KG, Klemic JF, Reed MA, Sigworth FJ (2002) Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells. Biosens Bioelectron 17(6–7):597–604. https://doi.org/10.1016/S0956-5663(02)00015-5

    Article  CAS  PubMed  Google Scholar 

  64. Andersson H, van den Berg A (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol 15(1):44–49. https://doi.org/10.1016/j.copbio.2004.01.004

    Article  CAS  PubMed  Google Scholar 

  65. Bruhn BR, Liu H, Schuhladen S, Hunt AJ, Mordovanakis A, Mayer M (2014) Dual-pore glass chips for cell-attached single-channel recordings. Lab Chip 14(14):2410–2417. https://doi.org/10.1039/c4lc00370e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fertig N, Blick RH, Behrends JC (2002) Whole cell patch clamp recording performed on a planar glass chip. Biophys J 82(6):3056–3062. https://doi.org/10.1016/s0006-3495(02)75646-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Py C, Denhoff MW, Sabourin N, Weber J, Shiu M, Zhao P (2014) Priming and testing silicon patch-clamp neurochips. N Biotechnol 31(5):430–435. https://doi.org/10.1016/j.nbt.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  68. Py C, Martina M, Diaz-Quijada GA, Luk CC, Martinez D, Denhoff MW, Charrier A, Comas T, Monette R, Krantis A, Syed NI, Mealing GA (2011) From understanding cellular function to novel drug discovery: the role of planar patch-clamp array chip technology. Front Pharmacol 2:51. https://doi.org/10.3389/fphar.2011.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hierlemann A, Frey U, Hafizovic S, Heer F (2011) Growing cells atop microelectronic chips: Interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc IEEE 99(2):252–284. https://doi.org/10.1109/JPROC.2010.2066532

    Article  CAS  Google Scholar 

  70. Fromherz P, Offenhausser A, Vetter T, Weis J (1991) A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252(5010):1290–1293. https://doi.org/10.1126/science.1925540

    Article  CAS  PubMed  Google Scholar 

  71. Taylor AM, Rhee SW, Tu CH, Cribbs DH, Cotman CW, Jeon NL (2003) Microfluidic multicompartment device for neuroscience research. Langmuir 19(5):1551–1556. https://doi.org/10.1021/la026417v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peyrin JM, Deleglise B, Saias L, Vignes M, Gougis P, Magnifico S, Betuing S, Pietri M, Caboche J, Vanhoutte P, Viovy JL, Brugg B (2011) Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers. Lab Chip 11(21):3663–3673. https://doi.org/10.1039/c1lc20014c

    Article  CAS  PubMed  Google Scholar 

  73. Dinh ND, Chiang YY, Hardelauf H, Baumann J, Jackson E, Waide S, Sisnaiske J, Frimat JP, Thriel CV, Janasek D, Peyrin JM, West J (2013) Microfluidic construction of minimalistic neuronal co-cultures. Lab Chip 13(7):1402–1412. https://doi.org/10.1039/c3lc41224e

    Article  CAS  PubMed  Google Scholar 

  74. Park J, Kim S, Park SI, Choe Y, Li J, Han A (2014) A microchip for quantitative analysis of CNS axon growth under localized biomolecular treatments. J Neurosci Methods 221 (0):166-174. doi:https://doi.org/10.1016/j.jneumeth.2013.09.018

  75. Poon WW, Blurton-Jones M, Tu CH, Feinberg LM, Chabrier MA, Harris JW, Jeon NL, Cotman CW (2011) β-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging 32(5):821–833. https://doi.org/10.1016/j.neurobiolaging.2009.05.012

    Article  CAS  PubMed  Google Scholar 

  76. Takayama Y, Kotake N, Haga T, Suzuki T, Mabuchi K (2012) Formation of one-way-structured cultured neuronal networks in microfluidic devices combining with micropatterning techniques. J Biosci Bioeng 114(1):92–95. https://doi.org/10.1016/j.jbiosc.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  77. Hulme SE, Shevkoplyas SS, Samuel A (2008) Microfluidics: streamlining discovery in worm biology. Nat Meth 5(7):589–590. https://doi.org/10.1038/nmeth0708-589

    Article  CAS  Google Scholar 

  78. Fior R, Maggiolino S, Lazzarino M, Sbaizero O (2011) A new transparent Bio-MEMS for uni-axial single cell stretching. Microsystem Technologies 17(10–11):1581–1587. https://doi.org/10.1007/s00542-011-1325-8

    Article  CAS  Google Scholar 

  79. Nguyen TD, Hogue IB, Cung K, Purohit PK, McAlpine MC (2013) Tension-induced neurite growth in microfluidic channels. Lab Chip 13(18):3735–3740. https://doi.org/10.1039/c3lc50681a

    Article  CAS  PubMed  Google Scholar 

  80. Bhattacharjee N, Li N, Keenan TM, Folch A (2010) A neuron-benign microfluidic gradient generator for studying the response of mammalian neurons towards axon guidance factors. Integr Biol 2(11-12):669–679. https://doi.org/10.1039/c0ib00038h

    Article  CAS  Google Scholar 

  81. Xiao RR, Zeng WJ, Li YT, Zou W, Wang L, Pei XF, Xie M, Huang WH (2013) Simultaneous generation of gradients with gradually changed slope in a microfluidic device for quantifying axon response. Anal Chem 85(16):7842–7850. https://doi.org/10.1021/ac4022055

    Article  CAS  PubMed  Google Scholar 

  82. Vogt AK, Lauer L, Knoll W, Offenhäusser A (2003) Micropatterned substrates for the growth of functional neuronal networks of defined geometry. Biotechnol Prog 19(5):1562–1568. https://doi.org/10.1021/bp034016f

    Article  CAS  PubMed  Google Scholar 

  83. Gilles S, Winter S, Michael KE, Meffert SH, Li P, Greben K, Simon U, Offenhäusser A, Mayer D (2012) Control of cell adhesion and neurite outgrowth by patterned gold nanoparticles with tunable attractive or repulsive surface properties. Small 8(21):3357–3367. https://doi.org/10.1002/smll.201200465

    Article  CAS  PubMed  Google Scholar 

  84. Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Meth 2(8):599–605. https://doi.org/10.1038/Nmeth777

    Article  CAS  Google Scholar 

  85. Lee SW, Lee SS (2008) Shrinkage ratio of PDMS and its alignment method for the wafer level process. Microsystem Technologies 14(2):205–208. https://doi.org/10.1007/s00542-007-0417-y

    Article  CAS  Google Scholar 

  86. de Lima AD, Merten MD, Voigt T (1997) Neuritic differentiation and synaptogenesis in serum-free neuronal cultures of the rat cerebral cortex. J Comp Neurol 382(2):230–246. https://doi.org/10.1002/(SICI)1096-9861(19970602)382:2<230::AID-CNE7>3.0.CO;2-4

    Article  PubMed  Google Scholar 

  87. Lein P, Johnson M, Guo X, Rueger D, Higgins D (1995) Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron 15(3):597–605. https://doi.org/10.1016/0896-6273(95)90148-5

    Article  CAS  PubMed  Google Scholar 

  88. Park JW, Vahidi B, Taylor AM, Rhee SW, Jeon NL (2006) Microfluidic culture platform for neuroscience research. Nat Protocols 1(4):2128–2136. https://doi.org/10.1038/nprot.2006.316

    Article  CAS  PubMed  Google Scholar 

  89. Bosse F (2012) Extrinsic cellular and molecular mediators of peripheral axonal regeneration. Cell Tissue Res 349(1):5–14. https://doi.org/10.1007/s00441-012-1389-5

    Article  CAS  PubMed  Google Scholar 

  90. Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281. https://doi.org/10.1146/annurev.neuro.24.1.1217

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz D. Wanzenboeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wanzenboeck, H.D., Scholze, P., Mika, J.K. (2020). Imaging and Electrophysiology of Individual Neurites Functionally Isolated in Microchannels. In: Pelc, R., Walz, W., Doucette, J.R. (eds) Neurohistology and Imaging Techniques. Neuromethods, vol 153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0428-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0428-1_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0426-7

  • Online ISBN: 978-1-0716-0428-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics