Skip to main content

Application of Synchrotron Radiation Circular Dichroism for RNA Structural Analysis

  • Protocol
  • First Online:
RNA Spectroscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2113))

Abstract

Circular dichroism (CD) spectroscopy is a fast and simple technique providing important information about the conformation of nucleic acids, proteins, sugars, lipids, and their interactions between each other. This electronic absorption spectroscopy method is extremely sensitive to any change in molecular structure containing asymmetric molecules. While numerous reviews describe how to analyze deoxyribonucleic acid (DNA) structures using CD, analyses of ribonucleic acids (RNAs) are scarce. Nevertheless, RNAs are important molecules involved in a multitude of roles in the cell. In this chapter, we present applications of synchrotron radiation circular dichroism (SRCD) extending the spectral range down to 170 nm, improving structural analysis of RNA, including the analysis of helical parameters and alternative structures found in RNA. The effects of temperature to measure thermodynamic parameters and analyze ribonucleoprotein complexes will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berova N, Nakanishi K, Woody RW (2000) Protein characterisation by synchrotron radiation circular dichroism spectroscopy. In: Circular dichroism principles and applications, vol 4. Wiley, New York, pp 317–370

    Google Scholar 

  2. Fasman GD (1996) Circular dichroism and the conformational analysis of biomolecules. Springer, New York, pp 317–370

    Book  Google Scholar 

  3. Nordén B, Rodger A, Daffron T (2010) Linear dichroism and circular dichroism a textbook on polarized-light spectroscopy. RCS Publishing, Cambridge, pp 317–370

    Google Scholar 

  4. Johnson WC (1990) Electronic circular dichroism spectroscopy (CD) spectroscopic of nucleic acids. In: Biophysics, vol 1. Springer Verlag, Berlin/Heidelberg, pp 2275–2280

    Google Scholar 

  5. Wallace BA (2000) Synchrotron radiation circular-dichroism spectroscopy as a tool for investigating protein structures. J Synchrotron Radiat 7:289–295

    Article  CAS  Google Scholar 

  6. Gray DM, Ratliff RL, Vaughan MR (1992) Circular dichroism spectroscopy of DNA. Methods Enzymol 211:389–406

    Article  CAS  Google Scholar 

  7. Holm AIS, Nielsen LM, Hoffmann SV, Nielsen SB (2010) Vacuum-ultraviolet circular dichroism spectroscopy of DNA: a valuable tool to elucidate topology and electronic coupling in DNA. Phys Chem Chem Phys 12:9581–9596

    Article  CAS  Google Scholar 

  8. Varani G, McClain WH (2000) The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep 1:18–23

    Article  CAS  Google Scholar 

  9. Kimsey I, Al-Hashimi HM (2014) Increasing occurrences and functional roles for high energy purine-pyrimidine base-pairs in nucleic acids. Curr Opin Struct Biol 24:72–80

    Article  CAS  Google Scholar 

  10. Miao Z, Westhof E (2017) RNA structure: advances and assessment of 3D structure prediction. Annu Rev Biophys 46:483–503

    Article  CAS  Google Scholar 

  11. Millevoi S, Moine H, Vagner S (2012) G-quadruplexes in RNA biology. Wiley Interdiscip Rev RNA 3:495–507

    Article  CAS  Google Scholar 

  12. Peselis A, Serganov A (2014) Structure and function of pseudoknots involved in gene expression control. Wiley Interdiscip Rev RNA 5:803–822

    Article  CAS  Google Scholar 

  13. Batey RT, Rambo RP, Doudna JA (1999) Tertiary motifs in RNA structure and folding. Angew Chem Int Ed Engl 38(16):2326–2343

    Article  CAS  Google Scholar 

  14. Refregiers M, Wien F, Ta HP, Premvardhan L, Bac S, Jamme F, Rouam V, Lagarde B, Polack F, Giorgetta JL, Ricaud JP, Bordessoule M, Giuliani A (2012) DISCO synchrotron-radiation circular-dichroism endstation at SOLEIL. J Synchrotron Radiat 19:831–835

    Article  CAS  Google Scholar 

  15. Giuliani A, Jamme F, Rouam V, Wien F, Giorgetta JL, Lagarde B, Chubar O, Bac S, Yao I, Rey S, Herbeaux C, Marlats JL, Zerbib D, Polack F, Refregiers M (2009) DISCO: a low-energy multipurpose beamline at synchrotron SOLEIL. J Synchrotron Radiat 16:835–841

    Article  Google Scholar 

  16. Miles AJ, Hoffmann SV, Tao Y, Janes RW, Wallace BA (2007) Synchrotron radiation circular dichroism (SRCD) spectroscopy: new Beamlines and new applications in biology. Spectroscopy 21:245–255

    Article  CAS  Google Scholar 

  17. Wallace BA, Gekko K, Hoffmann SV, Lin Y-H, Sutherland JC, Tao Y, Wien F, Janes RW (2011) Synchrotron radiation circular dichroism (SRCD) spectroscopy: an emerging method in structural biology for examining protein conformations and protein interactions. Nucl Instrum Methods Phys Res A649:177–178

    Article  Google Scholar 

  18. Wallace BA (2009) Protein characterisation by synchrotron radiation circular dichroism spectroscopy. Q Rev Biophys 42(4):317–370

    Article  CAS  Google Scholar 

  19. Wien F, Wallace BA (2005) Calcium fluoride micro cells for synchrotron radiation circular dichroism spectroscopy. Appl Spectrosc 59:1109–1113

    Article  CAS  Google Scholar 

  20. Lees JG, Smith BR, Wien F, Miles AJ, Wallace BA (2004) CDtool-an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Anal Biochem 332:285–289

    Article  CAS  Google Scholar 

  21. Micsonai A, Wien F, Kernya L, Lee YH, Goto Y, Refregiers M, Kardos J (2015) Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci U S A 112:E3095–E3103

    Article  CAS  Google Scholar 

  22. Micsonai A, Wien F, Bulyaki E, Kun J, Moussong E, Lee Y-H, Goto Y, Refregiers M, Kardos J (2018) BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res 46:W315–W322

    Article  CAS  Google Scholar 

  23. Sun X, Li JM, Wartell RM (2007) Conversion of stable RNA hairpin to a metastable dimer in frozen solution. RNA 13:2277–2286

    Article  CAS  Google Scholar 

  24. Cayrol B, Geinguenaud F, Lacoste J, Busi F, Le Derout J, Pietrement O, Le Cam E, Regnier P, Lavelle C, Arluison V (2009) Auto-assembly of E. coli DsrA small noncoding RNA: molecular characteristics and functional consequences. RNA Biol 6:434–445

    Article  CAS  Google Scholar 

  25. Schmid F (1989) Protein structure—a practical approach. IRL Press, Oxford

    Google Scholar 

  26. Johnson WC (1990) CD spectra for nucleic acid monomers vol 1C. Spectroscopic and kinetic data. In: Physical data I; Landolt-Börnstein – group VII. Biophysics. Springer-Verlag, Berlin Heidelberg, pp 1–24

    Google Scholar 

  27. Moore DS, Williams AL Jr (1986) CD of nucleic acids: III. Calculated CD of RNAs from new A, U, G, and C transition-moment parameters. Biopolymers 25:1461–1491

    Article  CAS  Google Scholar 

  28. Cech CL, Tinoco I Jr (1977) Circular dichroism calculations for double-stranded polynucleotides of repeating sequence. Biopolymers 16:43–65

    Article  CAS  Google Scholar 

  29. Rizzo V, Schellman JA (1984) Matrix-method calculation of linear and circular dichroism spectra of nucleic acids and polynucleotides. Biopolymers 23:435–470

    Article  CAS  Google Scholar 

  30. Herbert A (2019) Z-DNA and Z-RNA in human disease. Commun Biol 2:7

    Article  Google Scholar 

  31. Wien F, Miles AJ, Lees JG, Vronning Hoffmann S, Wallace BA (2005) VUV irradiation effects on proteins in high-flux synchrotron radiation circular dichroism spectroscopy. J Synchrotron Radiat 12:517–523

    Article  CAS  Google Scholar 

  32. Randazzo A, Spada GP, da Silva MW (2013) Circular dichroism of quadruplex structures. Top Curr Chem 330:67–86

    Article  CAS  Google Scholar 

  33. Hwang W, Arluison V, Hohng S (2011) Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for efficient annealing. Nucleic Acids Res 39:5131–5139

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Synchrotron SOLEIL, CNRS, and CEA. SRCD measurements on DISCO beamline at SOLEIL Synchrotron were performed under proposal # 20181037. We are grateful to R.R. Sinden (South Dakota School of Mines and Technology, USA) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Le Brun, E., Arluison, V., Wien, F. (2020). Application of Synchrotron Radiation Circular Dichroism for RNA Structural Analysis. In: Arluison, V., Wien, F. (eds) RNA Spectroscopy. Methods in Molecular Biology, vol 2113. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0278-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0278-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0277-5

  • Online ISBN: 978-1-0716-0278-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics