Skip to main content

Trial Design: Should Randomized Phase III Trials in Gynecological Cancers Be Abandoned?

  • Chapter
  • First Online:
Controversies in the Management of Gynecological Cancers

Abstract

For the past 60 years, the gold standard for assessing a new treatment’s efficacy is the randomized phase III trial. When properly designed, conducted, and reported, these studies can provide level-1 evidence that a new treatment is, on average, more effective than standard treatment in a patient population. This trial design does have some limitations, however, and nonrandomized treatment comparisons can be used to provide level-2 evidence concerning treatment effects or even extend the interpretation of a randomized trial. Propensity score analysis is one analytic approach for comparing nonrandomized treatments. Alternative analytic approaches to comparing nonrandomized treatments are an active area of statistical research.

Due to the increasing complexity and cost of conducting randomized phase III trials, there has been a growing reliance on early phase trials to provide preliminary evidence of the new treatment’s activity or to refine the hypotheses for the phase III trial. Growing interest in targeted therapies has contributed to a shift away from single-arm trials toward randomized phase II trials. In an effort to shorten the time for drug development and reduce resource requirements, clinical trialists are reassessing the phase II/III trial design. Adaptive trial designs attempt to provide a more seamless approach to speeding up and increasing the efficiency of drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003;22(2):151–85.

    Article  PubMed  Google Scholar 

  2. Grove A. Rethinking clinical trials. Science. 2011;333:1679.

    Article  CAS  PubMed  Google Scholar 

  3. Feinstein A, editor. Clinical biostatistics. St. Louis: C.V. Mosby Company; 1977.

    Google Scholar 

  4. George SL. Reducing patient eligibility criteria in cancer clinical trials. J Clin Oncol. 1996;14(4):1364–70.

    CAS  PubMed  Google Scholar 

  5. Nguyen TT, Somkin CP, Ma Y, Fung LC, Nguyen T. Participation of Asian-American women in cancer treatment research: a pilot study. J Natl Cancer Inst Monogr. 2005;35:102–5.

    Article  PubMed  Google Scholar 

  6. Phend C. Kidney ca drugs worked better inside trials. Medpage Today; 2012 [cited 2012 Feb 20]; Primary source: genitourinary cancers symposium: Heng DYC, et al. A multicentered population-based analysis of outcomes of patients with metastatic renal cell carcinoma (mRCC) who do not meet eligibility criteria for clinical trials. GUCS. 2012; Abstract 353. Available from: http://www.medpagetoday.com/MeetingCoverage/MGUCS/31031.

  7. Rosenbaum P, Rubin D. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70(1):41–55.

    Article  Google Scholar 

  8. Rubin DB. The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat Med. 2007;26(1):20–36.

    Article  PubMed  Google Scholar 

  9. D’Agostino Jr RB. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med. 1998;17(19):2265–81.

    Article  PubMed  Google Scholar 

  10. D’Agostino Jr RB, D’Agostino Sr RB. Estimating treatment effects using observational data. JAMA. 2007;297(3):314–6.

    Article  PubMed  Google Scholar 

  11. Wilkinson PM, Antonopoulos M, Lahousen M, Lind M, Kosmidis P. Epoetin alfa in platinum-treated ovarian cancer patients: results of a multinational, multicentre, randomised trial. Br J Cancer. 2006;94(7):947–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Rocconi R, Long B, Sullivan P, Blaize M, Brown J, Arbuckle J, et al., editors. Treatment of chemotherapy-induced anemia in patients with ovarian cancer: does the use of erythropoiesis-stimulating agents worsen survival? Orlando: Society of Gynecologic Oncology; 2011.

    Google Scholar 

  13. Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365(26):2473–83.

    Article  CAS  PubMed  Google Scholar 

  14. Stehman FB, Brady MF, Thigpen JT, Rossi EC, Burger RA. Cytokine use and survival in the first-line treatment of ovarian cancer: a Gynecologic Oncology Group Study. Gynecol Oncol. 2012;127(3):495–501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Shah B, Laupacis A, Hux JE, Austin PC. Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review. J Clin Epidemiol. 2005;58(6):550–9.

    Article  PubMed  Google Scholar 

  16. Sturmer T, Joshi M, Glynn RJ, Avorn J, Tothman KJ, Schneeweiss S. A review of the application of propensity score methods yielded increase use, advantages in specific settings, but not substantially difference estimates compared with conventional multivariable methods. J Clin Epidemiol. 2006;59(5):437–47.

    PubMed Central  PubMed  Google Scholar 

  17. Senn S, Graf E, Caputo A. Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure. Stat Med. 2007;26(30):5529–44.

    Article  PubMed  Google Scholar 

  18. Funk MJ, Westreich D, Wiesen C, Sturmer T, Brookhart MA, Davidian M. Doubly robust estimation of causal effects. Am J Epidemiol. 2011;173(7):761–7.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Robins JM, Finkelstein DM. Correcting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank tests. Biometrics. 2000;56(3):779–88.

    Article  CAS  PubMed  Google Scholar 

  20. Thurlimann B, Keshaviah A, Coates AS, Mouridsen H, Mauriac L, Forbes JF, et al. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med. 2005;353(26):2747–57.

    Article  PubMed  Google Scholar 

  21. Meyerhardt JA, Li L, Sanoff HK, Carpenter W, Schrag D. Effectiveness of bevacizumab with first-line combination chemotherapy for Medicare patients with stage IV colorectal cancer. J Clin Oncol. 2012;30(6):608–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lau J, Schmid C, Chambers T. Cumulative meta-analysis of clinical trials builds evidence for exemplary medical care. J Clin Epidemiol. 1995;48(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  23. The ICON and AGO Collaborators. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet. 2003;361:2099–106.

    Article  Google Scholar 

  24. Pujade-Lauraine E, Wagner U, Aavall-Lundqvist E, Gebski V, Heywood M, Vasey P, et al. Pegylated liposomal doxorubicin and carboplatin compared with paclitaxel and carboplatin for patients with platinum-sensitive ovarian cancer in late relapse. J Clin Oncol. 2010;28(20):323–3329.

    Google Scholar 

  25. Piccart-Gebhart M, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.

    Article  CAS  PubMed  Google Scholar 

  26. Karapetis C, Khambata-Ford S, Jonker D, O’Callaghan C, Tu D, Tebbutt N, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.

    Article  CAS  PubMed  Google Scholar 

  27. Romond E, Jeong J, Sledge G, Geyer C, Martino S, Rastogi P, et al. Trastuzumab plus adjuvant chemotherapy for HER2-positive breast cancer: final planned joint analysis of overall survival (OS) from NSABP B-31 and NCCTG N9831. In: San Antonio breast cancer symposium abstract S5-5 7 Dec 2012. San Antonio 2012.

    Google Scholar 

  28. Bang Y, Van Cutsem E, Feyereislova A, Chung H, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    Article  CAS  PubMed  Google Scholar 

  29. Allegra C, Yothers G, O’Connell M, Sharif S, Petrelli N, Colangelo L, et al. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol. 2010;29:11–6.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Perren T, Swart A, Pfisterer J, Ledermann J, Pujade-Lauraine E, Kristensen G, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365:2484–96.

    Article  CAS  PubMed  Google Scholar 

  31. Burger R, Brady M, Bookman M, Fleming G, Monk B, Huang H, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365:2473–83.

    Article  CAS  PubMed  Google Scholar 

  32. Mehta C, Cain K. Charts for the early stopping of pilot studies. J Clin Oncol. 1984;2(6):676–82.

    CAS  PubMed  Google Scholar 

  33. Simon R, Willes R, Ellenberg S. Randomized phase II clinical trials. Cancer Treat Rep. 1985;69:1375–81.

    CAS  PubMed  Google Scholar 

  34. Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989;10:1–10.

    Article  CAS  PubMed  Google Scholar 

  35. Warr D, McKinney S, Tannock I. Influence of measurement error on assessment of response to anticancer chemotherapy: proposal for new criteria of tumor response. J Clin Oncol. 1984;2(9):1040–6.

    CAS  PubMed  Google Scholar 

  36. Kramar A, Potvin D, Hill C. Multistage designs for phase II clinical trials: statistical issues in cancer research. Br J Cancer. 1996;74:1317–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wieand S. Randomized phase II trials: what does randomization gain? J Clin Oncol. 2005;23(9):1794–5.

    Article  PubMed  Google Scholar 

  38. Gan H, Grothey A, Pond G, Moore M, Siu L, Sargent D. Randomized phase II trials: inevitable or inadvisable? J Clin Oncol. 2010;28(15):3641–7.

    Google Scholar 

  39. Rubinstein L, Crowley J, Ivy P, LeBlanc M, Sargent D. Randomized phase II designs. Clin Cancer Res. 2009;15(6):1883–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Mandrekar S, Sargent D. Randomized phase II trials time for a new era in clinical trial design. J Thorac Oncol. 2010;5(7):932–4.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Freidlin B, Korn E, Hunsberger S, Gray R, Saxman S, Zujewski J. Proposal for the use of progression-free survival in unblinded randomized trials. J Clin Oncol. 2007;25(15):2122–6.

    Article  PubMed  Google Scholar 

  42. Moher D, Schulz K, Altman D. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. Ann Intern Med. 2001;134:657–62.

    Article  CAS  PubMed  Google Scholar 

  43. Keech A, Gebski V, Pike R, editors. Interpreting and reporting clinical trials. A guide to the consort statement and the principles of randomised controlled trials. Sydney: Australasian Medical Publishing; 2007.

    Google Scholar 

  44. Eisenhauer E, ten Bokkel Huinink W, Swenerton K, Gianni L, Myles J, van der Burg M, et al. European–Canadian randomized trial of paclitaxel in relapsed ovarian cancer: high-dose versus low-dose and long versus short infusion. J Clin Oncol. 1994;12:2654–66.

    CAS  PubMed  Google Scholar 

  45. Bookman M, Brady M, McGuire W, Harper P, Alberts D, Friedlander M, et al. Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a Phase III Trial of the Gynecologic Cancer Inter Group. J Clin Oncol. 2009;27:1419–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Sydes M, Parmar M, James N, Clarke N, Dearnaley D, Mason M, et al. Issues in applying multi-arm multi-stage methodology to a clinical trial in prostate cancer: the MRC STAMPEDE trial. Trials. 2009;10:39.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Hudmon K, Chamberlain R, Frankowski R. Outcomes of a placebo run-in period in a head and neck cancer chemoprevention trial. Control Clin Trials. 1997;18:228–40.

    Article  CAS  PubMed  Google Scholar 

  48. Goss G, Arnold A, Shepherd F, Dediu M, Ciuleanu T, Fenton D, et al. Randomized, double-blind trial of carboplatin and paclitaxel with either daily oral cediranib or placebo in advanced non–small-cell lung cancer: NCIC clinical trials group BR24 study. J Clin Oncol. 2010;28(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  49. Gynecologic Oncology Group. Cisplatin and radiation therapy with or without carboplatin and paclitaxel in patients with locally advanced cervical cancer. NCT01414608. 2012; http://clinicaltrials.gov.

  50. Mackay H, Provencheur D, Heywood M, Eisenhauer E, Oza A, Meyer R. Phase II/III study of intraperitoneal chemotherapy after neoadjuvant chemotherapy for ovarian cancer: NCIC CTG OV21. Curr Oncol. 2011;18(2):84–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Berry D. Adaptive clinical trials in oncology. Nat Rev Clin Oncol. 2012;9:199–207.

    Article  CAS  Google Scholar 

  52. Lee C, Lord S, Coates A, Simes R. Molecular biomarkers to individualise treatment: assessing the evidence. Med J Aust. 2009;190(11):631–6.

    PubMed  Google Scholar 

  53. Clark G. Prognostic factors versus predictive factors: examples from a clinical trial of erlotinib. Mol Oncol. 2008;1(4):406–12.

    Article  PubMed  Google Scholar 

  54. Henderson C, Patek A. The relationship between prognostic and predictive factors in the management of breast cancer. Breast Cancer Res Treat. 1998;52:261–88.

    Article  CAS  PubMed  Google Scholar 

  55. Hayes D, Track B, Harris A. Assessing the clinical impact of prognostic factors: when is “statistically significant” clinically useful? Breast Cancer Res Treat. 1998;52:305–19.

    Article  CAS  PubMed  Google Scholar 

  56. Romond E, Perez E, Bryant J, Suman V, Geyer C, Davidson N, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.

    Article  CAS  PubMed  Google Scholar 

  57. Paik S, Kim C, Jeong J, Geyer C, Romond E, Mejia-Mejia O, et al. Benefit from adjuvant trastuzumab may not be confined to patients with IHC 3+ and/or FISH-positive tumors: central testing results from NSABP B-31. ASCO annual meeting proceedings part I; Chicago, Illinois. J Clin Oncol. 2007;25:511.

    Google Scholar 

  58. Paik S, Kim C, Wolmark N. HER2 status and benefit from adjuvant trastuzumab in breast cancer (letter). N Engl J Med. 2008;358(13):1409–11.

    Article  CAS  PubMed  Google Scholar 

  59. Cappuzzo F, Ciuleanu T, Stelmakh L, Cicenas S, Szczésna A, Juhász E, et al. Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. Lancet Oncol. 2010;11:521–9.

    Article  CAS  PubMed  Google Scholar 

  60. Sargent D, Conley B, Allegra C, Collette L. Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol. 2005;23:2020–7.

    Article  PubMed  Google Scholar 

  61. Lee C, Simes RJ, Brown C, Lord S, Wagner U, Plante M, et al. Prognostic nomogram to predict progression-free survival in patients with platinum-sensitive recurrent ovarian cancer. Br J Cancer. 2011;105:1144–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Mandrekar S, Sargent D. Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J Clin Oncol. 2009;27(24):4027–34.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Bogaerts J, Cardoso F, Buyse M, Braga S, Loi S, Harrison J, et al. Gene signature evaluation as a prognostic tool: challenges in the design of the MINDACT trial. Nat Clin Pract Oncol. 2006;3(10):540–51.

    Article  CAS  PubMed  Google Scholar 

  64. Rubin E, Anderson K, Gause C. The BATTLE trial: a bold step toward improving the efficiency of biomarker-based drug development. Cancer Discov. 2011;1:17–20.

    Article  CAS  PubMed  Google Scholar 

  65. Zhou X, Liu S, Kim E, Herbst R, Lee J. Bayesian adaptive design for targeted therapy development in lung cancer – a step toward personalized medicine. Clin Trials. 2008;5(3):181–93.

    Article  PubMed  Google Scholar 

  66. Kim E, Herbst R, Wistuba I, Lee J, Blumenschein G, Tsao A, et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 2011;1:44–51.

    Article  CAS  PubMed  Google Scholar 

  67. Barker A, Sigman C, Kelloff G, Hylton N, Berry D, Esserman L. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther. 2009;86(1):97–100.

    Article  CAS  PubMed  Google Scholar 

  68. Flaherty K, Puzanov I, Kim K, Ribas A, McArthur G, Sosman J, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Kopetz S, Desai J, Chan E, Hecht J, O’Dwyer P, Lee R, et al. PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J Clin Oncol. 2010;28(15 Suppl):3534.

    Google Scholar 

  70. Prentice R. Surrogate endpoints in clinical trials: definitions and operational criteria. Stat Med. 1989;8:431–40.

    Article  CAS  PubMed  Google Scholar 

  71. Lee C, Marschner I, Simes R, Voysey M, Egleston B, Hudes G, et al. Increase in cholesterol predicts survival advantage in renal cell carcinoma patients treated with temsirolimus. Clin Cancer Res. 2012;18:3188–96.

    Article  CAS  PubMed  Google Scholar 

  72. Yusuf S, Collins R, Peto R. Why do we need some large, simple randomized trials? Stat Med. 1984;3:409–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark F. Brady PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Brady, M.F., Gebski, V. (2014). Trial Design: Should Randomized Phase III Trials in Gynecological Cancers Be Abandoned?. In: Ledermann, J., Creutzberg, C., Quinn, M. (eds) Controversies in the Management of Gynecological Cancers. Springer, London. https://doi.org/10.1007/978-0-85729-910-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-910-9_25

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-909-3

  • Online ISBN: 978-0-85729-910-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics