Skip to main content

Quaternion Atomic Function for Image Processing

  • Chapter
Book cover Guide to Geometric Algebra in Practice

Abstract

In this work we introduce a new kernel for image processing called the atomic function. This kernel is compact in the spatial domain, and it can be adapted to the behavior of the input signal by broadening or narrowing its band ensuring a maximum signal-to-noise ratio. It can be used for smooth differentiation of images in the quaternion algebra framework. We discuss the role of the quaternion atomic function with respect to monogenic signals. We then propose a steerable quaternion wavelet scheme for image structure and contour detection. Making use of the generalized Radon transform and images processed with the quaternion wavelet atomic function transform, we detect shape contours in color images. We believe that the atomic function is a promising kernel for image processing and scene analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayro-Corrochano, E.: Geometric Computing for Wavelet Transforms, Robot Vision, Learning, Control and Action. Springer, Berlin (2010)

    MATH  Google Scholar 

  2. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, Boston (1982)

    MATH  Google Scholar 

  3. Bülow, T.: Hypercomplex spectral signal representations for the processing and analysis of images. PhD thesis, Christian-Albert, Kiel University (1999)

    Google Scholar 

  4. Delanghe, R.: Clifford analysis: history and perspective. In: Computational Methods and Function Theory, vol. 1, pp. 107–153 (2001)

    Google Scholar 

  5. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(2), 3136–3144 (2007)

    Article  MathSciNet  Google Scholar 

  6. Gelf’and, M.I., Graev, M.I., Vilenkin, N.Ya.: Generalized Functions, vol. 5, Integral Geometry and Representation Theory. Academic Press, San Diego (1966)

    Google Scholar 

  7. Guyaev, Yu.V., Kravchenko, V.F.: A new class of WA-systems of Kravchenko–Rvachev functions. Moscow Dokl. Math. 75(2), 325–332 (2007)

    Google Scholar 

  8. Hamilton, W.R.: Elements of Quaternions. Chelsea, New York (1969). Longmans Green, London (1866)

    Google Scholar 

  9. Gorshkov, A., Kravchenko, V.F., Rvachev, V.A.: Estimation of the discrete derivative of a signal on the basis of atomic functions. Izmer. Tekh. 1(8), 10 (1992)

    Google Scholar 

  10. Kingsbury, N.: Image processing with complex wavelets. Philos. Trans. R. Soc. Lond. A 357, 2543–2560 (1999)

    Article  MATH  Google Scholar 

  11. Kovesi, P.: Invariant measures of images features from phase information. PhD thesis, University of Western Australia (1996)

    Google Scholar 

  12. Kravchenko, V.F., Perez-Meana, H.M., Ponomaryov, V.I.: Adaptive Digital Processing of Multidimensional Signals with Applications. Fizmatlit, Moscow (2009)

    Google Scholar 

  13. Magarey, J.F.A., Kingsbury, N.G.: Motion estimation using a complex-valued wavelet transform. IEEE Trans. Image Process. 6, 549–565 (1998)

    Google Scholar 

  14. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  15. Mitrea, M.: Clifford Waveletes, Singular Integrals and Hardy Spaces. Lecture Notes in Mathematics, vol. 1575. Springer, Berlin (1994)

    Google Scholar 

  16. Nabighian, M.N.: Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics 49(6), 780–786 (1984)

    Article  Google Scholar 

  17. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Sächs. Akad. Wiss., Leipzig. Math.-Phys. Kl. 69, 262–277 (1917)

    Google Scholar 

  18. Rvachev, V.A.: Compactly supported solution of functional–differential equations and their applications. Russ. Math. Surv. 45(1), 87–120 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pan, H.-P.: Uniform full information image matching complex conjugate wavelet pyramids. In: XVIII ISPRS Congress, vol. XXXI, Vienna, July 1996

    Google Scholar 

  20. Kolodyazhnya, V.M., Rvachev, V.A.: Atomic functions: generalization to the multivariable case and promising applications. Cybern. Syst. Anal. 43(6), 893–911 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the financial support of the SEP/CONACYT - 2007-1 82084 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Bayro-Corrochano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bayro-Corrochano, E., Moya-Sánchez, E.U. (2011). Quaternion Atomic Function for Image Processing. In: Dorst, L., Lasenby, J. (eds) Guide to Geometric Algebra in Practice. Springer, London. https://doi.org/10.1007/978-0-85729-811-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-811-9_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-810-2

  • Online ISBN: 978-0-85729-811-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics