Skip to main content

Development of Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cell Modules

  • Chapter
  • First Online:
Energy Efficiency and Renewable Energy Through Nanotechnology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Organic photovoltaics (OPV) have the potential for low production cost. Additionally, there has been an increase in both efficiency and stability of small-area OPV devices prepared in research laboratories worldwide and, consequently, attention on OPVs has increased tremendously. In this chapter we describe the challenges of OPVs and give suggestions on how these can be overcome. Design and synthesis of a new group of materials and low band gap polymers are described. Problems and possible solutions of OPV stability are shortly discussed. Furthermore, the latest technology to manufacture large-area OPV modules is described along with production of large-area modules by roll-to-roll printing of a low band gap polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Energy Information Administration (EIA), International Energy Outlook 2006, report # DOE/EIA-0484 (2006)

    Google Scholar 

  2. Politiken.dk, http://politiken.dk/eu/article261249.ece article in Danish published in 2007

  3. Kippelen B, Brédas J-L (2009) Organic photovoltaics. Energy Environ Sci 2:251–261

    Article  Google Scholar 

  4. Brabec CJ (2004) Organic photovoltaics: tehnology and market. Sol Mater Energy Sol Cells 83:273–292

    Article  Google Scholar 

  5. Helgesen M, Søndergaard R, Krebs FC (2009) Advanced materials and processes for polymer solar cell devices. J Mater Chem 20:36–60

    Article  Google Scholar 

  6. Spanggaard H, Krebs FC (2004) A brief history of the development of organic and polymeric photovoltaics. Sol Mater Energy Sol Cells 83:125–146

    Article  Google Scholar 

  7. Coakly KM, McGehee MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16:4533–4542

    Article  Google Scholar 

  8. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945

    Article  Google Scholar 

  9. Special issue: (2004) The development of organic and polymer photovoltaics. Sol Energy Mater Sol Cells (83):2–3

    Google Scholar 

  10. Special issue: (2005) Organic-based photovoltaics. MRS Bull. 30(1)

    Google Scholar 

  11. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11:15–26

    Article  Google Scholar 

  12. Waldauf C, Morana M, Denk P, Schilinsky P, Coakley K, Choulis SA, Brabec CJ (2006) Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl Phys Lett 89:233517

    Article  Google Scholar 

  13. Kroon R, Lenes M, Hummelen JC, Blom PWM, De Boer B (2008) Small bandgap polymers for organic solar cells (polymer material development in the last 5 years. Pol Rev 48:531–582

    Article  Google Scholar 

  14. Chen J, Cao Y (2009) Development of novel conjugated donor polymers for high-efficiencyefficiency bulk-heterojunction photovoltaic devices. Acc Chem Res 42:1709–1718

    Article  Google Scholar 

  15. Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91:954–985

    Article  Google Scholar 

  16. Winder C, Sariciftci NS (2004) Low band gap polymersLow band gap polymers for photon harvesting in bulk heterojunctions solar cells. J Mater Chem 14:1077–1086

    Article  Google Scholar 

  17. Jørgensen M, Norrman K, Krebs FC (2008) Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells 92:686–714

    Article  Google Scholar 

  18. McNeill CR, Abrusci A, Zaumseil J, Wilson R, McKiernan MJ, Burroughes JH, Halls JJM, Greenham NC, Friend RH (2007) Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes. Appl Phys Lett 90(1–3):193506

    Article  Google Scholar 

  19. Lenes M, Wetzelaer G-JAH, Kooistra FB, Veenstra SC, Hummelen JC, Blom PWM (2008) Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv Mater 20:2116–2119

    Article  Google Scholar 

  20. Yao Y, Liang Y, Shrotriya V, Xiao S, Yu L, Yang Y (2007) Plastic near-infrared photodetectors utilizing low band gap polymer. Adv Mater 19:3979–3983

    Article  Google Scholar 

  21. Liang Y, Feng D, Wu Y, Tsai S-T, Li G, Ray C, Yu L (2009) Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J Am Chem Soc 131:7792–7799

    Article  Google Scholar 

  22. Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells frabricated by all-solution processing. Science 317:222–225

    Article  Google Scholar 

  23. Bundgaard E, Krebs FC (2006) Low band gap conjugated polymers based on thiophene, benzothiadiazole and benzobis(thiadiazole). Macromolecules 39:2823–2831

    Article  Google Scholar 

  24. Wudl F, Kobayshi M, Heeger AJ (1984) Poly(isothianaphthene). J Org Chem 49:3382–3384

    Article  Google Scholar 

  25. Cava MP, Laksshmikatham MV (1975) Nonclassical condensed thiophenes. Acc Chem Res 8:139–144

    Article  Google Scholar 

  26. Kobayshi M, Colerani N, Boysel M, Wudl F, Heeger AJ (1985) The electronic and electrochemical properties of poly(isothianaphthene). J Chem Phys 82:5717–5723

    Article  Google Scholar 

  27. Henckens A, Knipper M, Polec I, Manca J, Lutsen L, Vanderzande D (2004) Poly(thienylene vinylene) derivates as low band gap polymerslow band gap polymers for photovoltaic applications. Thin Solid Films 451–452:572–579

    Article  Google Scholar 

  28. Dhanabalan A, van Duren JKJ, van Hal PA, van Dogen JLJ, Janssen RAJ (2001) Synthesis and characterzation of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Adv Funct Mater 11:255–262

    Article  Google Scholar 

  29. van Duren JKJ, Dhanabalan A, van Hal PA, Janssen RAJ (2001) Low-bandgap polymer photovoltaic cells. Synth Meter 121:1587–1588

    Article  Google Scholar 

  30. Brabec CJ, Winder C, Sariciftci NS, Hummelen JC, Dhanabalan A, van Hal PA, Janssen RAJ (2002) A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Adv Funct Mater 12:709–712

    Article  Google Scholar 

  31. Winder C, Mühlbacher D, Neugebauer H, Sariciftci NS, Brabec C, Janssen RAJ, Hummelen JK (2002) Polymer solar cells and infrared light emitting diodes: dual function low band gap polymer. Mol Cryst Liq Cryst 385:[213]\93–[220]\100

    Article  Google Scholar 

  32. Svensson M, Zhang F, Veenstra SC, Verhees WJH, Hummelen JC, Kroon JM, Inganäs O, Andersson MR (2003) High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv Mater 15:988–991

    Article  Google Scholar 

  33. Shi C, Yao Y, Yang Y, Pei Q (2006) Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. J Am Chem Soc 128:8980–8986

    Article  Google Scholar 

  34. Bundgaard E, Shaheen SE, Krebs FC, Ginley D (2007) Bulk heterojunctions based on a low band gap copolymer of thiophene and benzothiadiazole. Sol Energy Mater Sol Cells 91:1631–1637

    Article  Google Scholar 

  35. Chen M, Perzon E, Andersson MR, Marcinkevicius S, Jönsson SKM, Fahlman M, Berggren M (2004) 1 micron wavelength photo- and electroluminescence from a conjugated polymer. Appl Phys Lett 84:3570–3572

    Article  Google Scholar 

  36. Wang X, Perzon E, Oswald F, Langa F, Admassie S, Andersson MR, Inganäs O (2005) Enhanced photocurrent spectral responses in low-bandgap polyfluorene and C70-derivative-based solar cells. Adv Funct Mater 15:1665–1670

    Article  Google Scholar 

  37. Perzon E, Wang X, Zhang F, Mammo W, Delgado JL, de la Cruz P, Inganäs O, Langa F, Andersson MR (2005) Design, synthesis and properties of low band gap polyfluorene for photovoltaic devices. Synth Met 154:53–56

    Article  Google Scholar 

  38. Chen M, Perzon E, Robisson N, Jönsson SKM, Andersson MR, Fahlman M, Berggren M (2204) Low band gap donor-acceptor-donor polymers for infra-red electroluminescence and transistors. Synth Met 146:233–236

    Article  Google Scholar 

  39. Perzon E, Wang X, Admassie S, Inganäs O, Andersson MR (2006) An alternating low band-gap polyfluorene for optoelectronic devices. Polymer 47:4261–4268

    Article  Google Scholar 

  40. Wienk MM, Turbiez MGR, Struijk MP, Fonrodona M, Janssen RAJ (2006) Low band gap poly(di-2-thienylthienopyrazine):fullerene solar cells. Appl Phys Lett 88(1–3):153511

    Article  Google Scholar 

  41. Hou J, Chen TL, Zhang S, Chen H-Y, Yang Y (2009) Poly[4, 4-bis(2-ethylhexyl)cyclopenta[2, 1-b:3, 4-b’]dithiophene-2, 6-diyl-alt-2, 1, 3-benzoselenadiazole-4, 7-diyl], a new low band gap polymer in polymer solar cells. J Phys Chem C 113:1601–1605

    Article  Google Scholar 

  42. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500

    Article  Google Scholar 

  43. Mühlbacher D, Scharber M, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec C (2006) High photovoltaic performance of a low bandgap polymer. Adv Mater 18:2884–2889

    Article  Google Scholar 

  44. Mühlbacher D, Scharber M, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec C (2006) High photovoltaic performance of a low bandgap polymer. Adv Mater 18:2884–2889 correction

    Article  Google Scholar 

  45. Hou J, Chen H-Y, Zhang S, Chen RI, Yang Y, Wu Y, Li G (2009) Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J Am Chem Soc 131:15586–15587

    Article  Google Scholar 

  46. Hou J, Park M-H, Zhang S, Yao Y, Chen L-M, Li J-H, Yang Y (2008) Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[1, 2-b:4, 5-b’]dithiophene. Macromolecules 41:6012–6018

    Article  Google Scholar 

  47. Huo L, Chen H-Y, Hou J, Chen TL, Yang Y (2009) Low band gap dithieno[3,2-b:2’,3’-d]silole-containing polymers, synthesis, characterization and photovoltaic application. Chem Comm (37):5570–5572

    Google Scholar 

  48. Wang E, Wang L, Lan L, Luo C, Zhuang W, Peng J, Cao Y (2008) High-performance polymer heterojunction solar cells of a polysilafluorene. Appl Phys Lett 92:033307-1–033307-3

    Google Scholar 

  49. Hou J, Chen H-Y, Zhang S, Li G, Yang Y (2008) Synthesis, characterization and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2, 1, 3-benzothiadiazole. J Am Chem Soc 130:16144–16145

    Article  Google Scholar 

  50. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617–1622

    Article  Google Scholar 

  51. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiencyefficiency solutionproccessable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:854–868

    Google Scholar 

  52. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, Mcculloch I, Ha C-S, Ree M (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiencyefficiency polythiophenes:fullerene solar cells. Nat Mater 5:197–203

    Article  Google Scholar 

  53. Krebs FC, Alstrup J, Spanggaard H, Larsen K, Kold E (2004) Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate. Sol Energy Mater Sol Cells 83:293–300

    Article  Google Scholar 

  54. Krebs FC (2006) Encapsulation of polymer photovoltaic prototypes. Sol Energy Mater Sol Cells 90:3633–3643

    Article  Google Scholar 

  55. Krebs FC, Spanggaard H (2005) Significant improvement of polymer solar cell stabilitystability. Chem Mater 17:5235–5237

    Article  Google Scholar 

  56. Gagnon DR, Capistran JD, Karasz FE, Lenz RW, Antoun S (1987) Synthesis, doping, and electrical conductivity of high molecular weight poly(p-phenylene vinylene). Polymer 28:567–573

    Article  Google Scholar 

  57. Garay RO, Mayer B, Karasz FE, Lenz RW (1995) Synthesis and characterization of poly[2, 5-bis(triethoxy)-1, 4-phenylene vinylene]. J Polym Sci, Part A: Polym Chem 33:525–531

    Article  Google Scholar 

  58. Lenz RW, Han CC, Stengersmith J, Karasz FE (1988) Preparation of poly(phenylene vinylene) from cycloalkylene sulfonium salt monomers and polymers. J Polym Sci, Part A: Polym Chem 26:3241–3249

    Article  Google Scholar 

  59. Wessling RA (1985) The polymerization of xylene bisdialkyl sulfonium salts. J Polym Sci, Polym Symp 72:55–66

    Article  Google Scholar 

  60. Bott DC, Brown CS, Chai CK, Walker NS, Feast WJ, Foot PJS, Calvert PD, Billingham NC, Friend RH (1986) Durham poly acetylene: preparation and properties of the unoriented material. Synth Met 14:245–269

    Article  Google Scholar 

  61. Feast WJ, Winter JN (1985) An improved synthesis of polyacetylene. J Chem Soc, Chem Comm 4:202–203

    Article  Google Scholar 

  62. Furlani A, Napoletano C, Russo MV, Feast WJ (1986) Stereoregular polyphenylacetylene. Polym Bull 16:311–317

    Article  Google Scholar 

  63. Henckens A, Colladet K, Fourier S, Cleij TJ, Lutsen L, Gelan J, Vanderzande D (2005) Synthesis of 3, 4-diphenyl-substituted poly(thienylene vinylene), low band-gap polymers via the dithiocarbamate route. Macromolecules 38:19–26

    Article  Google Scholar 

  64. Nguyen LH, Gunes S, Neugebauer H, Sariciftci NS, Banishoeib F, Henckens A, Cleij T, Lutsen L, Vanderzande D (2006) Precursor route poly(thienylene vinylene) for organic solar cells: photophysics and photovoltaic performance. Sol Energy Mater Sol Cells 90:2815–2828

    Article  Google Scholar 

  65. Banishoeib F, Adriaensens P, Berson S, Guillerez S, Douheret O, Manca J, Fourier S, Cleij TJ, Lutsen L, Vanderzande D (2007) The synthesis of region-regular poly(3-alkyl-2, 5-thienylene vinylene) derivates using lithium bis(trimethylsilyl)amide (LHMDS) in the dithiocarbamate precursor route. Sol Energy Mater Sol Cells 91:1026–1034

    Article  Google Scholar 

  66. Banishoeib F, Henckens A, Fourier S, Vanhooyland G, Breselge M, Manca J, Cleij TJ, Lutsen L, Vanderzande D, Nguyen LH, Neugebauer H, Sariciftci NS (2008) Synthesis of poly(2, 5-thienylene vinylene) and its derivates: low band gap materials for photovoltaics. Thin Solid Films 516:3978–3988

    Article  Google Scholar 

  67. Girotto C, Cheyns D, Aernouts T, Banishoeib F, Lutsen L, Cleij TJ, Vanderzande D, Genoe J, Poortman J, Heremans P (2008) Bulk heterojunction organic solar cells based on soluble poly(thienylene vinylene) derivates. Org Electron 9:740–746

    Article  Google Scholar 

  68. Helgesen M, Krebs FC (2010) Photovoltaic performance of polymers based on dithienylthienopyrazines bearing thermocleavable benzoate esters. Macromolecules 43:1253–1260

    Article  Google Scholar 

  69. Helgesen M, Krebs FC (2008) Thermocleavable low band gap polymerslow band gap polymers and solar cells therefrom with remarkable stabilitystability toward oxygen. Macromolecules 41:8986–8994

    Article  Google Scholar 

  70. Krebs FC (2009) Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol Energy Mater Sol Cells 93:394–412

    Article  Google Scholar 

  71. Krebs FC, Gevorgyan SA, Alstrup J (2009) A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stabilitystability studies. J Mater Chem 19:5442–5451

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Danish Agency for Science Technology and Innovation (FTP, ref. 274-08-0057). We would like thank Ole Hagemann and Jan Alstrup at Risø DTU for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Bundgaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bundgaard, E., Krebs, F. (2011). Development of Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cell Modules. In: Zang, L. (eds) Energy Efficiency and Renewable Energy Through Nanotechnology. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-638-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-638-2_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-637-5

  • Online ISBN: 978-0-85729-638-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics