Skip to main content

Jacobi Identities and Related Combinatorial Formulas

  • Chapter
  • First Online:
Thinking in Problems
  • 2529 Accesses

Abstract

The derivatives of a quadratic trinomial F = ax 2 + bx + c at its roots x 1, x 2 add up to zero (Vieta’s theorem). Alternatively, we can write this as 1/F′(x 1) + 1/F′(x 2) = 0 or, equivalently, 1/(x 1 − x 2) + 1/(x 2 − x 1) = 0. Also, there is an obvious identity: x 1/(x 1 − x 2) + x 2/(x 2 − x 1) = 1. C.G.J. Jacobi’s concern with questions of dynamics and geometry led him to derive far-reaching generalizations of these identities for polynomials of arbitrary degree, which enabled him to solve several complex problems. For example, he squared an ellipsoid’s surface, determined the geodesics on this surface, and described the dynamics with two motionless centers of gravity. In this chapter, readers will become acquainted with the Jacobi identities and related formulas and their close ties with complex analysis; in addition, they will learn about some less traditional applications of the Jacobi identities (to linear differential equations). The chapter also contains notes about further generalizations and applications and a short guide to the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The proof in section E12.39 is done for the complex field ℂ. However, it is applicable for any infinite field because a finitely generated extension of the rational field is embeddable in ℂ. (Readers should complete all details.)

  2. 2.

    The fundamental solution possesses n − 2 continuous derivatives, so convolving it with the right-hand side brings n − 1 continuous derivatives, which may be established proceeding step by step as follows:

    1. 1.

      Let the functions f and g be identically equal to zero on, respectively, {t < 0} and {t < a} and continuous on, respectively, {t ≥ 0} and {t ≥ a}, where a ≥ 0; show that their convolution h = f*g equals zero identically on t < a and \( h(t)=\int\limits_a^t {f(t-s)g(s)ds} =\int\limits_0^{t-a } {f(s)g(t-s)ds} \) for t ≥ a.

    2. 2.

      In addition, let g be continuously differentiable on {t ≥ a}; prove that h is continuously differentiable on {t ≥ a}, with \( {h}^{\prime}(t)=g(a+0)f(t-a)+\int\limits_a^t {f(t-s){g}^{\prime}(s)ds} \). (Use integration by parts.)

    3. 3.

      Show by induction on m that if f(t) is an m ≥ 0 times continuously differentiable function with f(0) = … =  f [m](0) = 0, then the function \( F(t)=\left\{ {\begin{array} {llll}{\int\limits_a^t {f(t-s)g(s)ds},\;\mathrm{ for}\;t\geqslant a,} \\{0,\quad \quad \quad \quad \mathrm{ for}\;t<a} \\\end{array}} \right. \), with g continuous on {t ≥ a}, is m times continuously differentiable.

    4. 4.

      Combining the results of steps 2 and 3 (applied for g′ in place of g), deduce by induction that if, under the conditions of step 2, f is m times continuously differentiable on (−∞,∞) [so that f(0) = … = f [m](0) = 0] and g is continuously differentiable on {t ≥ a}, then f*g is m + 1 time continuously differentiable.

References

  • Arnol’d, V.I.: Математические методы классической механики. 3rd edn. “Наука” Press, Moscow (1989). [English transl. Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, No 60). 2nd edn. Springer (1989)]

    Google Scholar 

  • Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Особенности дифференцируемых отображений Т.1. “Наука” Press, Moscow (1982). [English transl. Singularities of Differentiable Maps. V.1. The Classification of Critical Points, Caustic and Wave Fronts. Boston (1985)]

    Google Scholar 

  • Arnol’d, V.I., Novikov, S.P. (eds.): Динамические системы IV. Итоги науки и техники. Современные проблемы математики. Фундаментальные направления, Т.4. ВИНИТИ Press, Moscow (1985). [English transl. Dynamical Systems IV. Symplectic Geometry and its Applications. Springer (1997)]

    Google Scholar 

  • Bochner, S., Martin, W.T.: Several Complex Variables. Princeton University Press, Princeton (1948)

    MATH  Google Scholar 

  • Cartan, H.: Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes. Hermann, Paris (1961). [English transl. Elementary Theory of Analytic Functions of One or Several Complex Variables (Dover Books on Mathematics). Dover (1995)]

    Google Scholar 

  • Charlier, C.L.: Die Mechanik des Himmels. Walter de Gruyter, Berlin/Leipzig (1927)

    MATH  Google Scholar 

  • Dieudonné, J.: Foundation of Modern Analysis. Academic, New York/London (1960)

    Google Scholar 

  • Givental, A.B..: Полиномиальность электростатических потенциалов (Polynomiality of electrostatic potentials). УМН 39(5), 253–254 (1984). Russian

    Google Scholar 

  • Hörmander, L.: An Introduction to Complex Analysis in Several Variables. D. Van Nostrand, Princeton/New Jersey/Toronto/New York/London (1966)

    MATH  Google Scholar 

  • Jacobi, C.G.J.: Disquisitiones analyticae de fractionibus simplicibus. Berlin (1825)

    Google Scholar 

  • Jacobi, C.G.J.: Vorlesungen über Dynamik. Aufl. 2. G. Reimer, Berlin (1884). [English transl. Mathematical Aspect of Classical and Celestial Mechanics (Texts and Readings in Mathematics, V.51). 2nd rev. edn. Hindustan Book agency (2009)]

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Теоретическая физика, Т.1: Механика. “Наука” Press, Moscow (1973). [English transl. Mechanics, 3rd edn. Butterworth-Heinemann (1976)]

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Теоретическая физика, Т.8: электродинамика сплошных сред” “Наука” Press, Moscow (1982). [English transl. Electrodynamics of continuous media, 2nd edn. Butterworth-Heinemann (1984)]

    Google Scholar 

  • Lang, S.: Algebra. Addison-Wesley, Reading/London/Amsterdam/Don Mills/Sydney/Tokyo (1965)

    MATH  Google Scholar 

  • Pakovich, F., Roytvarf, N., Yomdin, Y.: Cauchy-type integrals of algebraic functions. Isr. J. of Math. 144, 221–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Schwartz, L., Huet, D.: Méthodes mathématiques pour les sciences physiques. Hermann, Paris (1961)

    MATH  Google Scholar 

  • Venkataraman, C.S.: In: Problems and solutions. Math. Magazine 44(1), 55 (1971)

    MathSciNet  Google Scholar 

  • Venkov, B.A.: Элементарная теория чисел. “ОНТИ” Press, Moscow and Leningrad (1937). [English transl. Elementary Number Theory (Translated and edited by H. Alderson). Wolters-Noordhofl, Groningen (1970)]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roytvarf, A.A. (2013). Jacobi Identities and Related Combinatorial Formulas. In: Thinking in Problems. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8406-8_1

Download citation

Publish with us

Policies and ethics