Skip to main content

Frames as Codes

  • Chapter
Finite Frames

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This chapter reviews the development of finite frames as codes for erasures and additive noise. These types of errors typically occur when analog signals are transmitted in an unreliable environment. The use of frames allows one to recover the signal with controllable accuracy from part of the encoded, noisy data. While linear binary codes have a long history in information theory, frames as codes over the real or complex numbers have only been examined since the 1980s. In the encoding process, a vector in a finite-dimensional real or complex Hilbert space is mapped to the sequence of its inner products with frame vectors. An erasure occurs when part of these frame coefficients is no longer accessible after the transmission. Additive noise can arise from the encoding process, such as when coefficients are rounded, or from the transmission. This chapter covers two of the most popular recovery algorithms: blind reconstruction, where missing coefficients are set to zero, and active error correction, which aims to recover the signal perfectly based on the known coefficients. The erasures can be modeled as either having a deterministic or a random occurrence pattern. In the deterministic regime it has been customary to optimize the frame performance in the worst-case scenario. Optimality for a small number of erasures then leads to geometric conditions such as the class of equiangular tight frames. Random erasure models are often used in conjunction with performance measures based on averaged reconstruction errors, such as the mean-squared error. Frames as codes for erasures are also closely related to recent results on sparse recovery. Finally, fusion frames and packet erasures introduce an additional structure which imposes constraints on the construction of optimal frames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3), 253–263 (2008). doi:10.1007/s00365-007-9003-x

    Article  MathSciNet  MATH  Google Scholar 

  2. Benedetto, J., Yilmaz, O., Powell, A.: Sigma-delta quantization and finite frames. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP’04), vol. 3, pp. iii, 937–940 (2004). doi:10.1109/ICASSP.2004.1326700

    Google Scholar 

  3. Benedetto, J.J., Powell, A.M., Yılmaz, Ö.: Second-order sigma-delta (ΣΔ) quantization of finite frame expansions. Appl. Comput. Harmon. Anal. 20(1), 126–148 (2006). doi:10.1016/j.acha.2005.04.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Benedetto, J.J., Powell, A.M., Yılmaz, Ö.: Sigma-delta (ΣΔ) quantization and finite frames. IEEE Trans. Inf. Theory 52(5), 1990–2005 (2006). doi:10.1109/TIT.2006.872849

    Article  Google Scholar 

  5. Bodmann, B.G.: Optimal linear transmission by loss-insensitive packet encoding. Appl. Comput. Harmon. Anal. 22(3), 274–285 (2007). doi:10.1016/j.acha.2006.07.003

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodmann, B.G., Elwood, H.J.: Complex equiangular Parseval frames and Seidel matrices containing pth roots of unity. Proc. Am. Math. Soc. 138(12), 4387–4404 (2010). doi:10.1090/S0002-9939-2010-10435-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Bodmann, B.G., Paulsen, V.I.: Frames, graphs and erasures. Linear Algebra Appl. 404, 118–146 (2005). doi:10.1016/j.laa.2005.02.016

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodmann, B.G., Paulsen, V.I.: Frame paths and error bounds for sigma-delta quantization. Appl. Comput. Harmon. Anal. 22(2), 176–197 (2007). doi:10.1016/j.acha.2006.05.010

    Article  MathSciNet  MATH  Google Scholar 

  9. Bodmann, B.G., Paulsen, V.I., Abdulbaki, S.A.: Smooth frame-path termination for higher order sigma-delta quantization. J. Fourier Anal. Appl. 13(3), 285–307 (2007). doi:10.1007/s00041-006-6032-y

    Article  MathSciNet  MATH  Google Scholar 

  10. Bodmann, B.G., Paulsen, V.I., Tomforde, M.: Equiangular tight frames from complex Seidel matrices containing cube roots of unity. Linear Algebra Appl. 430(1), 396–417 (2009). doi:10.1016/j.laa.2008.08.002

    Article  MathSciNet  MATH  Google Scholar 

  11. Bodmann, B.G., Singh, P.K.: Burst erasures and the mean-square error for cyclic Parseval frames. IEEE Trans. Inf. Theory 57(7), 4622–4635 (2011). doi:10.1109/TIT.2011.2146150

    Article  MathSciNet  Google Scholar 

  12. Bölcskei, H., Hlawatsch, F.: Noise reduction in oversampled filter banks using predictive quantization. IEEE Trans. Inf. Theory 47(1), 155–172 (2001). doi:10.1109/18.904519

    Article  MATH  Google Scholar 

  13. Bourgain, J., Dilworth, S., Ford, K., Konyagin, S., Kutzarova, D.: Explicit constructions of rip matrices and related problems. Duke Math. J. 159(1), 145–185 (2011). doi:10.1215/00127094-1384809

    Article  MathSciNet  MATH  Google Scholar 

  14. Candes, E., Rudelson, M., Tao, T., Vershynin, R.: Error correction via linear programming. In: 46th Annual IEEE Symposium on Foundations of Computer Science. FOCS 2005, pp. 668–681 (2005). doi:10.1109/SFCS.2005.5464411

    Chapter  Google Scholar 

  15. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006). doi:10.1002/cpa.20124

    Article  MATH  Google Scholar 

  16. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006). doi:10.1109/TIT.2006.885507

    Article  MathSciNet  Google Scholar 

  17. Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18(2–4), 387–430 (2003). Frames. doi:10.1023/A:1021349819855

    Article  MathSciNet  MATH  Google Scholar 

  18. Casazza, P.G., Kutyniok, G.: Frames of subspaces. In: Wavelets, Frames and Operator Theory. Contemp. Math., vol. 345, pp. 87–113. Am. Math. Soc., Providence (2004)

    Chapter  Google Scholar 

  19. Casazza, P.G., Kutyniok, G.: Robustness of fusion frames under erasures of subspaces and of local frame vectors. In: Radon Transforms, Geometry, and Wavelets. Contemp. Math., vol. 464, pp. 149–160. Am. Math. Soc., Providence (2008)

    Chapter  Google Scholar 

  20. Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 25(1), 114–132 (2008). doi:10.1016/j.acha.2007.10.001

    Article  MathSciNet  MATH  Google Scholar 

  21. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algorithms 22(1), 60–65 (2003). doi:10.1002/rsa.10073

    Article  MathSciNet  MATH  Google Scholar 

  22. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001). doi:10.1109/18.959265

    Article  MathSciNet  MATH  Google Scholar 

  23. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989). doi:10.1137/0149053

    Article  MathSciNet  MATH  Google Scholar 

  24. Et-Taoui, B.: Equi-isoclinic planes of Euclidean spaces. Indag. Math. (N.S.) 17(2), 205–219 (2006). doi:10.1016/S0019-3577(06)80016-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Et-Taoui, B.: Equi-isoclinic planes in Euclidean even dimensional spaces. Adv. Geom. 7(3), 379–384 (2007). doi:10.1515/ADVGEOM.2007.023

    Article  MathSciNet  MATH  Google Scholar 

  26. Et-Taoui, B., Fruchard, A.: Sous-espaces équi-isoclins de l’espace euclidien. Adv. Geom. 9(4), 471–515 (2009). doi:10.1515/ADVGEOM.2009.029

    Article  MathSciNet  MATH  Google Scholar 

  27. Godsil, C.D., Hensel, A.D.: Distance regular covers of the complete graph. J. Comb. Theory, Ser. B 56(2), 205–238 (1992). doi:10.1016/0095-8956(92)90019-T

    Article  MathSciNet  MATH  Google Scholar 

  28. Goyal, V.K., Kelner, J.A., Kovačević, J.: Multiple description vector quantization with a coarse lattice. IEEE Trans. Inf. Theory 48(3), 781–788 (2002). doi:10.1109/18.986048

    Article  MATH  Google Scholar 

  29. Goyal, V.K., Kovačević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10(3), 203–233 (2001). doi:10.1006/acha.2000.0340

    Article  MathSciNet  MATH  Google Scholar 

  30. Goyal, V.K., Vetterli, M., Thao, N.T.: Quantized overcomplete expansions in R N: analysis, synthesis, and algorithms. IEEE Trans. Inf. Theory 44(1), 16–31 (1998). doi:10.1109/18.650985

    Article  MathSciNet  MATH  Google Scholar 

  31. Hoffman, T.R., Solazzo, J.P.: Complex equiangular tight frames and erasures, preprint, available at arxiv:1107.2267

  32. Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004). doi:10.1016/j.laa.2003.07.012

    Article  MathSciNet  MATH  Google Scholar 

  33. Kalra, D.: Complex equiangular cyclic frames and erasures. Linear Algebra Appl. 419(2–3), 373–399 (2006). doi:10.1016/j.laa.2006.05.008

    Article  MathSciNet  MATH  Google Scholar 

  34. Kovačević, J., Dragotti, P.L., Goyal, V.K.: Filter bank frame expansions with erasures. IEEE Trans. Inf. Theory 48(6), 1439–1450 (2002). Special issue on Shannon theory: perspective, trends, and applications. doi:10.1109/TIT.2002.1003832

    Article  MATH  Google Scholar 

  35. Kutyniok, G., Pezeshki, A., Calderbank, R., Liu, T.: Robust dimension reduction, fusion frames, and Grassmannian packings. Appl. Comput. Harmon. Anal. 26(1), 64–76 (2009). doi:10.1016/j.acha.2008.03.001

    Article  MathSciNet  MATH  Google Scholar 

  36. Lemmens, P.W.H., Seidel, J.J.: Equi-isoclinic subspaces of Euclidean spaces. Nederl. Akad. Wetensch. Proc. Ser. A 76=Indag. Math. 35, 98–107 (1973)

    MathSciNet  Google Scholar 

  37. Lopez, J., Han, D.: Optimal dual frames for erasures. Linear Algebra Appl. 432(1), 471–482 (2010). doi:10.1016/j.laa.2009.08.031

    Article  MathSciNet  MATH  Google Scholar 

  38. Marshall, T.G. Jr.: Coding of real-number sequences for error correction: a digital signal processing problem. IEEE J. Sel. Areas Commun. 2(2), 381–392 (1984). doi:10.1109/JSAC.1984.1146063

    Article  Google Scholar 

  39. Marshall, T.: Fourier transform convolutional error-correcting codes. In: Twenty-Third Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 658–662 (1989). doi:10.1109/ACSSC.1989.1200980

    Google Scholar 

  40. Massey, P.G.: Optimal reconstruction systems for erasures and for the q-potential. Linear Algebra Appl. 431(8), 1302–1316 (2009). doi:10.1016/j.laa.2009.05.001

    Article  MathSciNet  MATH  Google Scholar 

  41. Püschel, M., Kovačević, J.: Real, tight frames with maximal robustness to erasures. In: Data Compression Conference. Proceedings. DCC 2005, pp. 63–72 (2005). doi:10.1109/DCC.2005.77

    Google Scholar 

  42. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). 623–656

    MathSciNet  MATH  Google Scholar 

  43. Shannon, C.E.: Communication in the presence of noise. Proc. I.R.E. 37, 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  44. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. The University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  45. Strohmer, T., Heath, R.W. Jr.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003). doi:10.1016/S1063-5203(03)00023-X

    Article  MathSciNet  MATH  Google Scholar 

  46. Tropp, J.A., Dhillon, I.S., Heath, R.W. Jr., Strohmer, T.: Designing structured tight frames via an alternating projection method. IEEE Trans. Inf. Theory 51(1), 188–209 (2005). doi:10.1109/TIT.2004.839492

    Article  MathSciNet  Google Scholar 

  47. Vershynin, R.: Frame expansions with erasures: an approach through the non-commutative operator theory. Appl. Comput. Harmon. Anal. 18(2), 167–176 (2005). doi:10.1016/j.acha.2004.12.001

    Article  MathSciNet  MATH  Google Scholar 

  48. Welch, L.: Lower bounds on the maximum cross correlation of signals (corresp.). IEEE Trans. Inf. Theory 20(3), 397–399 (1974). doi:10.1109/TIT.1974.1055219

    Article  MathSciNet  MATH  Google Scholar 

  49. Xia, P., Zhou, S., Giannakis, G.: Achieving the Welch bound with difference sets. IEEE Trans. Inf. Theory 51(5), 1900–1907 (2005). doi:10.1109/TIT.2005.846411

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Special thanks go to Gitta Kutyniok and to Pete Casazza for the helpful comments in the course of preparing this chapter. The research presented here was partially supported by NSF grant DMS-1109545 and AFOSR grant FA9550-11-1-0245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard G. Bodmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bodmann, B.G. (2013). Frames as Codes. In: Casazza, P., Kutyniok, G. (eds) Finite Frames. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8373-3_7

Download citation

Publish with us

Policies and ethics