Skip to main content

The Recognition of Primes

  • Chapter
  • First Online:
Prime Numbers and Computer Methods for Factorization

Part of the book series: Modern Birkhäuser Classics ((MBC))

  • 2835 Accesses

Abstract

One very important concern in number theory is to establish whether a given number N is prime or composite. At first sight it might seem that in order to decide the question an attempt must be made to factorize N and if it fails, then N is a prime. Fortunately there exist primality tests which do not rely upon factorization. This is very lucky indeed, since all factorization methods developed so far are rather laborious. Such an approach would admit only numbers of moderate size to be examined and the situation for deciding on primality would be rather bad. It is interesting to note that methods to determine primality, other than attempting to factorize, do not give any indication of the factors of N in the case where N turns out to be composite.—Since the prime 2 possesses certain particular properties, we shall, in this and the next chapter, assume for most of the time that N is an odd integer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. D. H. Lehmer, “On the Converse of Fermat’s Theorem,” Am. Math. Monthly 43 (1936) pp. 347–354.

    Article  MathSciNet  Google Scholar 

  2. D. H. Lehmer, “On the Converse of Fermat’s Theorem II,” Am. Math. Monthly 56 (1949) pp. 300–309.

    Article  MathSciNet  MATH  Google Scholar 

  3. Carl Pomerance, John L. Selfridge and Samuel S. Wagstaff, Jr., “The Pseudoprimes to 25 ∙ 109,” Math. Comp. 35 (1980) pp. 1003–1026.

    MathSciNet  MATH  Google Scholar 

  4. Su Hee Kim and Carl Pomerance, “The Probability That a Random Probable Prime is Composite,” Math. Comp. 53 (1989) pp. 721–741.

    Article  MathSciNet  MATH  Google Scholar 

  5. Oystein Ore, Number Theory and Its History, McGraw-Hill, New York, 1948, pp. 331–339.

    MATH  Google Scholar 

  6. Gerhard Jaeschke, “The Carmichael Numbers to 1012,” Math. Comp. 55 (1990) pp. 383– 389.

    MathSciNet  MATH  Google Scholar 

  7. R. G. E. Pinch, “The Carmichael Numbers up to 1015,” Math. Comp. 61 (1993) pp. 381–391.

    MathSciNet  MATH  Google Scholar 

  8. R. G. E. Pinch, “The Carmichael Numbers up to 1016,” preprint (1993).

    Google Scholar 

  9. Gerhard Jaeschke, “On Strong Pseudoprimes to Several Bases,” Math. Comp. 61 (1993) pp. 915–926.

    Article  MathSciNet  MATH  Google Scholar 

  10. Gary Miller, “Riemann’s Hypothesis and Tests for Primality,” Journ. of Comp. and Syst. Sc. 13 (1976) pp. 300–317.

    Article  MATH  Google Scholar 

  11. Carl Pomerance, “On the Distribution of Pseudoprimes,” Math. Comp. 37 (1981) pp. 587–593.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. R. Alford, A. Granville, and C. Pomerance, “There are Infinitely Many Carmichael Numbers,” Ann. Math. (to appear).

    Google Scholar 

  13. R. G. E. Pinch, “Some Primality Testing Algorithms,” Notices Am. Math. Soc. 40 (1993) pp. 1203–1210.

    Google Scholar 

  14. John Brillhart, D. H. Lehmer and John Selfridge, “New Primality Criteria and Factor izations of 2m ± 1,” Math. Comp. 29 (1975) pp. 620–647.

    MathSciNet  MATH  Google Scholar 

  15. Hiromi Suyama. “The Cofactor of F 15 is Composite,” Abstracts Am. Math. Soc. 5 (1984) pp. 271–272.

    Google Scholar 

  16. Anders Björn and Hans Riesel, “Factors of Generalized Fermat Numbers,” AMS Proc. Symp. Appl Math. (to appear).

    Google Scholar 

  17. Daniel Shanks, “Corrigendum” Math. Comp. 39 (1982) p. 759.

    MathSciNet  Google Scholar 

  18. Carl Pomerance, “Very Short Primality Proofs,” Math. Comp. 48 (1987) pp. 315–322.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. C. Williams and J. S. Judd, “Some Algorithms for Prime Testing Using Generalized Lehmer Functions,” Math Comp. 30 (1976) pp. 867–886.

    MathSciNet  MATH  Google Scholar 

  20. Hans Riesel, “Lucasian Criteria for the Primality of N = h ∙ 2n − 1,” Math. Comp. 23 (1969) pp. 869–875.

    MathSciNet  MATH  Google Scholar 

  21. Wieb Bosma, “Explicit Primality Criteria for h ∙ 2k ± 1,” Math. Comp. 61 (1993) pp. 97–109.

    MathSciNet  MATH  Google Scholar 

  22. H. C. Williams, “Effective Primality Tests for Some Integers of the Forms A5n − 1 and A7n − 1,” Math. Comp. 48 (1987) pp. 385–403.

    MathSciNet  MATH  Google Scholar 

  23. K. Inkeri and J. Sirkesalo, “Factorization of Certain Numbers of the Form h ∙ 2n + k,” Ann. Univ. Turkuensis, Series A No. 38 (1959).

    Google Scholar 

  24. K. Inkeri, “Tests for Primality,” Ann. Acad. Sc. Fenn., Series A No. 279 (1960).

    Google Scholar 

  25. William Adams and Daniel Shanks, “Strong Primality Tests That Are Not Sufficient,” Math. Comp. 39 (1982) pp. 255–300.

    Article  MathSciNet  MATH  Google Scholar 

  26. Leonard Adleman and Frank T. Leighton, “An O(n 1/10.89) Primality Testing Algorithm,” Math. Comp. 36 (1981) pp. 261–266.

    MathSciNet  MATH  Google Scholar 

  27. Carl Pomerance, “Recent Developments in Primality Testing,” The Mathematical In telligencer 3 (1981) pp. 97–105.

    Article  MathSciNet  MATH  Google Scholar 

  28. Carl Pomerance, “The Search for Prime Numbers,” Sc. Amer. 247 (Dec. 1982) pp. 122– 130.

    Article  Google Scholar 

  29. Leonard M. Adleman, Carl Pomerance and Robert S. Rumely, “On Distinguishing Prime Numbers from Composite Numbers,” Ann. of Math. 117 (1983) pp. 173–206.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. W Lenstra, Jr., “Primality Testing Algorithms,” Séminaire Bourbaki 33 (1980–81) No. 576, pp. 243–257.

    Google Scholar 

  31. H. Cohen and H. W. Lenstra, Jr., “Primality Testing and Jacobi Sums,” Math. Comp. 42 (1984) pp. 297–330.

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Cohen and A.K. Lenstra, “Implementation of a New Primality Test,” Math. Comp. 48 (1987) pp. 103–121.

    Article  MathSciNet  MATH  Google Scholar 

  33. John D. Dixon, “Factorization and Primality Tests,” Am. Math. Monthly 91 (1984) pp. 333–352. Contains a large bibliography.

    Article  MATH  Google Scholar 

  34. A. O. L. Atkin and F. Morain, “Elliptic Curves and Primality Proving,” Math. Comp. 61 (1993) pp. 29–68.

    Article  MathSciNet  MATH  Google Scholar 

  35. Henri Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  36. S. Goldwasser and S. Kilian, “Almost All Primes Can be Quickly Certified,” Proc. 18th Annual ACM Symp. on Theory of Computing (1986) pp. 316–329.

    Google Scholar 

  37. R. Schoof, “Elliptic Curves over Finite Fields and the Computation of Square Roots mod p,” Math. Comp. 44 (1985) pp. 483–494.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Riesel .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Riesel, H. (2011). The Recognition of Primes. In: Prime Numbers and Computer Methods for Factorization. Modern Birkhäuser Classics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8298-9_4

Download citation

Publish with us

Policies and ethics