Skip to main content
  • 357 Accesses

Abstract

Recall that a Banach space is a complete normed space. In this book, we always assume that X is an infinite-dimensional Banach space. For completeness, in this chapter, we provide some basic results on Banach spaces that we will use in this book. Most of them can be found in the books [8, 12, 17, 18, 21, 28, 44, 73, 79] and the two survey papers [19, 72].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.11 References

  1. S. Banach, Theory of Linear Operations, North Holland Mathematical Library, vol. 38 (1987).

    Google Scholar 

  2. C. Bessaga and A. Pełczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164.

    MathSciNet  MATH  Google Scholar 

  3. F. Bombai, On V* set and Pełczynski’s property (V*), Glasgow Math. J. 32 (1990), 109–120.

    Article  MathSciNet  Google Scholar 

  4. J. Bourgain, On the Dunford-Pettis property, Proc. Amer. Math. Soc. 81 (1981), 265–272.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bourgain, New Classes of L p-spaces, Lecture Notes in Mathematics, Springer-Verlag 889 (1981).

    Google Scholar 

  6. J. Bourgain, New Banach properties of the disc algebra and H , Acta Math. 152 (1984), 1–48.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bourgain and F. Delbaen, A class of special L -spaces, Acta Math. 145 (1980), 155–176.

    Article  MathSciNet  MATH  Google Scholar 

  8. R.D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Math. 993, Springer-Verlag, New York (1983).

    Google Scholar 

  9. P.G. Casazza and T.J. Shura, Tsirelson’s Space, Lecture Notes in Math. 1363, Springer-Verlag, Berlin, (1989).

    Google Scholar 

  10. P.G. Casazza, G.L. García, and W.B. Johnson, An example of an asymptotic Hibertian space which fails the approximation property, preprint.

    Google Scholar 

  11. J.M.F. Castillo and M. Conzález, The Dunford-Pettis property is not a three-space property, Israel J. Math. 81 (1993), 297–299.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Cembranos and J. Mendoza, Banach Spaces of Vector-Valued Functions, Lecture Notes in Math. 1676 Springer-Verlag New York, Berlin, Heidelberg (1997).

    Google Scholar 

  13. KaiLai Chung, A Course in Probability Theory, Academic Press Inc 1974.

    Google Scholar 

  14. M.D. Contreras and S. Díaz, C(K,A) and C(K,H ) have the Dunford-Pettis property, Proc. Amer. Math. Soc. 124 (1996), 3413–3416.

    Article  MathSciNet  MATH  Google Scholar 

  15. M.D. Contreras and S. Díaz, On the Dunford-Pettis property in spaces of vector-valued bounded functions, Bull. Austral. Math. Soc. 53 (1996), 131–134.

    Article  MathSciNet  MATH  Google Scholar 

  16. M.M. Day, Normed Linear Spaces’, Springer-Verlag, New-York (1973).

    Google Scholar 

  17. R. Deville, G. Godefroy, and V. Zizler, Smoothness and Renormings in Ba-nach Spaces, Piman Monographs and Surveys in Pure and Applied Mathematics 64 (1993).

    Google Scholar 

  18. J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York (1984).

    Book  Google Scholar 

  19. J. Diestel, A survey of results related to the Dunford-Pettis property, Contemporary Math, vol 2, Proc. of the Conf. on Integration, Topology and Geometry in Linear Spaces, Amer. Math. Soc., Providence, RI (1980) 15–60.

    Article  MathSciNet  Google Scholar 

  20. J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press (1995).

    Google Scholar 

  21. J. Diestel and J.J. Uhl, Jr., Vector Measures, Math. Survey 15, Amer. Math. Soc., Providence, RI (1977).

    Google Scholar 

  22. P. Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1970), 309–317.

    Article  MathSciNet  Google Scholar 

  23. F. Galvin and K. Prikry, Borel sets and Ramsey’s theorem, J. Symbolic Logic 38 (1973), 193–198.

    Article  MathSciNet  MATH  Google Scholar 

  24. W.T. Gowers, A space not containing c 0 , l 1 , or a reflexive subspace, Trans. Amer. Math. Soc. 344 (1994), 407–420.

    MathSciNet  MATH  Google Scholar 

  25. W.T. Gowers, A new dichotomy for Banach spaces, Geom. Funct. Anal. 6 (1996), 1083–1093.

    Article  MathSciNet  MATH  Google Scholar 

  26. W.T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851–874.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type C(K), Canad. J. Math. 5 (1953), 129–173.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Guerre, Classical Sequences in Banach Spaces, Marcel Dekker (1992).

    Google Scholar 

  29. P. Harmand, D. Werner, and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Springer-Verlag, (1993).

    Google Scholar 

  30. R. Heinrich and P. Mankiewicz, Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math. 73 (1982), 225–251.

    MathSciNet  MATH  Google Scholar 

  31. R.C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518–527.

    Article  MathSciNet  MATH  Google Scholar 

  32. R.C. James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101–119.

    Article  MathSciNet  MATH  Google Scholar 

  33. R.C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542–550.

    Article  MathSciNet  MATH  Google Scholar 

  34. R.C. James, Weakly compact sets, Trans. Amer. Math. Soc. 113 (1964), 129–140.

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Jarchow, The three space problem and ideals of operators, Math. Nachr. 119 (1984), 121–128.

    Article  MathSciNet  MATH  Google Scholar 

  36. W.B. Johnson, A complementary universal conjugate Banach space and its relation to the approximation problem, Israel J. Math. 13 (1972), 301–310.

    Article  MathSciNet  Google Scholar 

  37. W.B. Johnson, Banach spaces all of whose subspaces have the approximation property, Seminar d’Analyse Fonct. Exposé 16, Ecole Polytechnique (1979-1980); Special Topics of Applied Mathematics, North-Holland, Amsterdam (1980), 15–26.

    Google Scholar 

  38. W.B. Johnson and J. Lindenstrauss, Handbook of the Geometry of Banach Spaces, Volume 1, Elsevier (2001).

    Google Scholar 

  39. W.B. Johnson and M. Zippin, Separable L 1 preduals are quotients of C(Δ), Israel J. Math. 16 (1973), 198–202.

    Article  MathSciNet  Google Scholar 

  40. A. Kamińka and M. Mastyło, The Dunford-Pettis property for symmetric spaces, Can. J. Math. 52 (2000), 789–813.

    Article  Google Scholar 

  41. J.L. Kelley, General Topology, Springer-Verlag (1975).

    Google Scholar 

  42. S.V. Kisliakov, On the conditions of Dunford-Pettis, Pełczynski and Grothendieck, Dokl. Akad. Nauk SSSR 225 (1975), 1252–1255.

    MathSciNet  Google Scholar 

  43. J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag (1977).

    Google Scholar 

  45. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer-Verlag (1979).

    Google Scholar 

  46. R.H. Lohman, A note on Banach spaces containing l 1 , Canad. Math. Bull. 19 (1976), 365–367.

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Mazurkiewicz and W. Sierpiński, Contribution à la topologie des ensembles dénombrablles, Fund. Math. 1 (1920), 17–27.

    Google Scholar 

  48. V.D. Milman, Infinite-dimensional geometry of the unit sphere in a Banach space, Soviet Math. Dokl. 8 (1967), 1440–1444.

    Google Scholar 

  49. N.J. Nelsen and N. Tomczak-Jaegermann, Banach lattices with property (H) and weak Hilbert spaces. Illinois J. Math. 36 (1992), 345–371.

    MathSciNet  Google Scholar 

  50. C.P. Nicolescu, Weak compactness in Banach lattices, J. Operator Theory, 6 (1981), 217–231.

    MathSciNet  Google Scholar 

  51. E. Odell, Applications of Ramsey theorems to Banach space theory, Univ. of Texas Press, Austin (1981), 379–404.

    Google Scholar 

  52. E. Odell, On subspaces, asymptotics structure, and distortion of Banach spaces; connections with logic, in Analysis and Logic, ed C. Finet and C. Michaux 301–376. Cambridge Studies in Advanced Mathematics (2003).

    Google Scholar 

  53. E. Odell and H.P. Rosenthal, A double dual characterization of separable Banach spaces containing l 1 , Israel J. Math. 20 (1975), 375–384.

    Article  MathSciNet  MATH  Google Scholar 

  54. E. Odell and Th. Schlumprecht, The distortion problem, Acta Math. 173 (1994), 259–281.

    Article  MathSciNet  MATH  Google Scholar 

  55. M.I. Ostrovskii, Three spaces problem for the weak Banach-Saks property, Math. Notes 38 (1985), 905–908.

    Article  MathSciNet  Google Scholar 

  56. A. Pełczynski, A connection between weakly unconditional convergence and weak completeness of Banach spaces, Bull. Acad. Polon. Sci. 6 (1958), 251–253.

    MATH  Google Scholar 

  57. A. Pełczynski, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. 10 (1962), 641–648.

    MATH  Google Scholar 

  58. A. Pełczynski, Projection in certain Banach spaces, Studia Math. 19 (1960), 209–228.

    MathSciNet  MATH  Google Scholar 

  59. A. Pełczynski, Banach Spaces of Analytic Functions and Absolutely Summing Operators, volume 30 of CBMS conference series in mathematics, Amer. Math. Soc. (1977).

    Google Scholar 

  60. A. Pełczynski and Z. Semadeni, Space of continuous functions (III) (Space C(Ω) for Ω without perfect subsets), Studia Math. 18 (1959), 211–222.

    MathSciNet  MATH  Google Scholar 

  61. A. Pełczynski and I. Singer, On non-equivalent basis and conditional basis in Banach spaces, Studia Math. 25 (1964), 5–25.

    MathSciNet  MATH  Google Scholar 

  62. R.S. Phillips, On linear transformations, trans. Amer. Math. Soc. 48 (1940), 516–541.

    Article  MathSciNet  Google Scholar 

  63. A. Pietsch, Operator Ideals, North-Holland (1980).

    Google Scholar 

  64. G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, C.B.M.S. Amer. Math. Soc. 60 (1985).

    Google Scholar 

  65. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Math 94, Cambridge University Press (1990).

    Google Scholar 

  66. N. Randrianantoanina, Complemented copies of l 1 and Pełczyński’s property (V*) in Bochner function spaces, Canad. J. Math. 48 (1996), 625–640.

    Article  MathSciNet  MATH  Google Scholar 

  67. H.P. Rosenthal, On relatively disjoint families of measures, Studia Math., 37 (1970), 13–36.

    MathSciNet  MATH  Google Scholar 

  68. H.P. Rosenthal, A charactenzation of Banach spaces containing l 1 , Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413.

    Article  MathSciNet  MATH  Google Scholar 

  69. Royden, Real Analysis, (3rd ed.) Macmillan Publ. Co., New York (1988).

    MATH  Google Scholar 

  70. W. Rudin, Functional Analysis, 2nd edition, McGraw Hill (1991).

    Google Scholar 

  71. S.F. Saccone, The Pełczynski property for tight subspaces, J. Funct. Anal. 148 (1997) 86–116.

    Article  MathSciNet  MATH  Google Scholar 

  72. E. Saab and P. Saab, On stability problems of some properties in Banach spaces, Function Spaces, Lecture Notes in Pure and Applied Mathematics 136 (ed. K. Jarosz), Marcel Dekker (1992) 367–394.

    Google Scholar 

  73. Z. Semademi, Banach Spaces on Continuous Functions, Polish Scientific Publishers (1971).

    Google Scholar 

  74. A. Sobczyk, Projection of the space m on its subspace c 0 , Bull. Amer. Math. Soc. 47 (1941), 938–947.

    Article  MathSciNet  Google Scholar 

  75. A. Szankowski, A Banach lattice without the approximation property, Israel J. Math. 24 (1976), 329–337.

    Article  MathSciNet  MATH  Google Scholar 

  76. A. Szankowski, Subspaces without approximation property, Israel J. Math. 30 (1978), 123–129.

    Article  MathSciNet  MATH  Google Scholar 

  77. N. Tomczak-Jaegermann, A solution of the homogeneous Banach space problem, Canadian Math. Soc. 1945-1995, Vol. 3, J. Carrell and R. Nurty (editors), CMS, Ottawa (1995), 267–286.

    Google Scholar 

  78. A. Ülger, The weak Phillips property, Coll. Math. 87 (2001), 147–158.

    Article  MATH  Google Scholar 

  79. P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Math. 25 (1991).

    Google Scholar 

  80. M. Zippin, A remark on bases and reflexivity in Banach spaces, Israel J. Math. 6 (1968), 74–79.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, PK. (2004). Classical Theorems. In: Köthe-Bochner Function Spaces. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8188-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8188-3_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6482-8

  • Online ISBN: 978-0-8176-8188-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics