Skip to main content

Optimal Control and Vanishing Viscosity for the Burgers Equation

  • Chapter
  • First Online:

Abstract

We revisit an optimization strategy recently introduced by the authors to compute numerical approximations of minimizers for optimal control problems governed by scalar conservation laws in the presence of shocks.We focus on the one-dimensional (1-D) Burgers equation. This new descent strategy, called the alternating descent method, in the inviscid case, distinguishes and alternates descent directions that move the shock and those that perturb the profile of the solution away from it. In this chapter we analyze the optimization problem for the viscous version of the Burgers equation. We show that optimal controls of the viscous equation converge to those of the inviscid one as the viscosity parameter tends to zero and discuss how the alternating descent method can be adapted to this viscous frame.

Optimal control for hyperbolic conservation laws is a difficult topic which requires a considerable analytical effort and is computationally expensive in practice. In the last years a number of methods have been proposed to reduce the computational cost and to render this type of problem affordable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardos, C., Pironneau, O.: A formalism for the differentiation of conservation laws. C.R. Acad. Sci. Paris Sér I, 335, 839-845 (2002).

    MATH  MathSciNet  Google Scholar 

  2. Bardos, C., Pironneau, O.: Derivatives and control in presence of shocks. J. Comput. Fluid Dynamics, 11, 383-392 (2003).

    Google Scholar 

  3. Bouchut, F., James, F.: One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. Theory Appl., 32, 891-933 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  4. Bouchut, F., James, F.: Differentiability with respect to initial data for a scalar conservation law, in Proceedings Seventh Internat. Conf. on Hyperbolic Problems, Birkhäuser, Basel (1999), 113-118.

    Google Scholar 

  5. Bouchut, F., James, F., Mancini, S.: Uniqueness and weak stability for multi-dimensional transport equations with one-sided Lipschitz coefficient. Ann. Sc. Norm. Super. Pisa Cl. Sci., 4, 1-25 (2005).

    MATH  MathSciNet  Google Scholar 

  6. Brenier, Y., Osher, S.: The discrete one-sided Lipschitz condition for convex scalar conservation laws. SIAM J. Numer. Anal., 25, 8-23 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  7. Bressan, A., Marson, A.: A variational calculus for discontinuous solutions of systems of conservation laws. Comm. Partial Diff. Equations, 20, 1491-1552 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  8. Bressan, A., Marson, A.: A maximum principle for optimally controlled systems of conservation laws. Rend. Sem. Mat. Univ. Padova, 94, 79-94 (1995).

    MATH  MathSciNet  Google Scholar 

  9. Castro, C., Palacios, F., Zuazua, E.: An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks. Math. Models Methods Appl. Sci., 18, 369-416 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  10. Castro, C., Zuazua, E.: On the flux identification problem for scalar conservation laws in the presence of shocks (preprint, 2008).

    Google Scholar 

  11. Dal Maso, G., Le Floch, P., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl., 74, 458-483 (1995).

    MathSciNet  Google Scholar 

  12. Escobedo, M., Vázquez, J.L., Zuazua, E.: Asymptotic behavior and source-type solutions for a diffusion-convection equation. Arch. Rational Mech. Anal., 124, 43-65 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  13. Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim., 39, 1756-1778 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  14. Giles, M.B., Pierce, N.A.: Analytic adjoint solutions for the quasi-one-dimensional Euler equations. J. Fluid Mech., 426, 327-345 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  15. Glowinski, R.: Numerical Methods for Fluids. Part 3, Handbook of Numerical Analysis IX, Ciarlet, P., Lions, J.-L., eds., Elsevier, Amsterdam (2003).

    Google Scholar 

  16. Godlewski, E., Raviart, P.A.: The linearized stability of solutions of nonlinear hyperbolic systems of conservation laws. A general numerical approach. Math. Comp. Simulations, 50, 77-95 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  17. Godlewski, E., Raviart, P.A.: Hyperbolic Systems of Conservation Laws, Ellipses, Paris (1991).

    MATH  Google Scholar 

  18. Godlewski, E., Olazabal, M., Raviart, P.A.: On the linearization of hyperbolic systems of conservation laws. Application to stability, in Équations Différentielles et Applications, Gauthier-Villars, Paris (1998), 549-570.

    Google Scholar 

  19. Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, Berlin (1996).

    MATH  Google Scholar 

  20. Gosse, L., James, F.: Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients. Math. Comput., 69, 987-1015 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  21. Hirsch, C.: Numerical Computation of Internal and External Flows. Vols. 1 and 2, Wiley, New York (1988).

    Google Scholar 

  22. James, F., Sepúlveda, M.: Convergence results for the flux identification in a scalar conservation law. SIAM J. Control Optim., 37, 869-891 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  23. LeVeque, R.: Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, London (2002).

    MATH  Google Scholar 

  24. Majda, A.: The Stability of Multidimensional Shock Fronts, American Mathematical Society, Providence, RI (1983).

    Google Scholar 

  25. Métivier, G.: Stability of multidimensional shocks. Course notes, http://www.math.u-bordeaux.fr/~metivier/cours.html (2003).

  26. Mohammadi, B., Pironneau, O.: Shape optimization in fluid mechanics. Annual Rev. Fluids Mech., 36, 255-279 (2004).

    Article  MathSciNet  Google Scholar 

  27. Nadarajah, S., Jameson, A.: A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization. AIAA Paper 2000-0667, 38th Aerospace Sciences Meeting and Exhibit, January 2000, Reno, NV.

    Google Scholar 

  28. Oleinik, O.: Discontinuous solutions of nonlinear differential equations. Amer. Math. Soc. Transl., 26, 95-172 (1957).

    MathSciNet  Google Scholar 

  29. Ulbrich, S.: Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws. Systems Control Lett., 48, 313-328 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  30. Whitham, G.B.: Linear and Nonlinear Waves, Wiley, New York (1974).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Boston

About this chapter

Cite this chapter

Castro, C., Palacios, F., Zuazua, E. (2010). Optimal Control and Vanishing Viscosity for the Burgers Equation. In: Constanda, C., Pérez, M. (eds) Integral Methods in Science and Engineering, Volume 2. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4897-8_7

Download citation

Publish with us

Policies and ethics