Skip to main content

An Analytically Solvable Asymptotic Model of Atrial Excitability

  • Chapter
  • 2415 Accesses

Summary

We report a three-variable simplified model of excitation fronts in human atrial tissue. The model is derived by novel asymptotic techniques from the biophysically realistic model of Courtemanche et al. [11] in an extension of our previous similar models. An iterative analytical solution of the model is presented which is in excellent quantitative agreement with the realistic model. It opens new possibilities for analytical studies as well as for efficient numerical simulation of this and other cardiac models of similar structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliev, R. R., Panfilov, A. V., A simple two-variable model of cardiac excitation, Chaos Solitons and Fractals, 7, 293–301, 1996.

    Article  Google Scholar 

  2. Arnol’d, V. I., ed., Dynamical Systems IV, Springer, Berlin, 1994.

    Google Scholar 

  3. Beeler, G. W., Reuter, H., Reconstruction of the action potential of ventricular myocardial fibres, J. Physiol., 268, 177–210, 1977.

    Google Scholar 

  4. Bernus, O., Wilders, R., Zemlin, W., Verschelde, H., Panfilov, A. V., A computationally ef- ficient electrophysiological model of human ventricular cells, Am. J. Physiol., 282, H2296– H2308, 2002.

    Google Scholar 

  5. Biktashev, V. N., Dissipation of the excitation wavefronts, Phys. Rev. Lett., 89(16), 168102, 2002.

    Article  Google Scholar 

  6. Biktashev, V. N., A simplified model of propagation and dissipation of excitation fronts, Int. J. Bif. Chaos, 13(12), 3605–3620, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  7. Biktashev, V. N., Suckley, R., Non-Tikhonov asymptotic properties of cardiac excitability, Phys. Rev. Lett., 93(16), 168103, 2004.

    Article  Google Scholar 

  8. Biktasheva, I. V., Biktashev, V. N., Dawes,W. N., Holden, A. V., Saumarez, R. C., M.Savill, A., Dissipation of the excitation front as a mechanism of self-terminating arrhythmias, IJBC, 13(12), 3645–3656, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  9. Biktasheva, I. V., Simitev, R., Suckley, R., Biktashev, V. N., Asymptotic properties of mathematical models of excitability, Phil. Trans. Roy. Soc. A, 364, 1283–1298, DOI:10.1098/rsta.206.1770, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  10. Clayton, R. H., Computational models of normal and abnormal action potential propagation in cardiac tissue: linking experimental and clinical cardiology, Physiol. Meas., 22, R15– R34, 2001.

    Article  Google Scholar 

  11. Courtemanche, M., Ramirez, R., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model, Am. J. Physiol., 275, H301–H321, 1998.

    Google Scholar 

  12. Demir, S. S., Clark, J. W., Murphey, C. R., Giles, W. R., A mathematical model of a rabbit sinoatrial node cell, Am. J. Physiol., 266, C832–C852, 1994.

    Google Scholar 

  13. Duckett, G., Barkley, D, Modeling the dynamics of cardiac action potentials, Phys. Rev. Lett., 85, 884–887, 2000.

    Article  Google Scholar 

  14. Engelstein, E. D., Zipes, D. P., Sudden cardiac death, in The Heart, Arteries and Veins, eds. R. W. Alexander, R. C. Schlant, V. Fuster, pp. 1081–1112, McGraw-Hill, New York, 1998.

    Google Scholar 

  15. Fenton, F., Karma, A., Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation, Chaos, 8, 20–47, 1998.

    Article  MATH  Google Scholar 

  16. Fife, P. C., Pattern formation in reacting and diffusing systems, J. Chem. Phys., 64, 554–564, 1976.

    Article  Google Scholar 

  17. FitzHugh, R. A., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 445–466, 1961.

    Article  Google Scholar 

  18. Hinch, R, An analytical study of the physiology and pathology of the propagation of cardiac action potentials, Progress in Biophysics and Molecular Biology, 78, 45–81, 2002.

    Article  Google Scholar 

  19. Holden, A. V., Panfilov, A. V., Modelling propagation in excitable media, in Computational Biology of the Heart, eds. A. V. Holden, A. V. Panfilov, pp. 65–99, Wiley, New York, 1997.

    Google Scholar 

  20. Kohl, P., Noble, D., Winslow, R. L., Hunter, P. J., Computational modelling of biological systems: tools and visions, Phil. Trans. R. Soc. Lond. A, 358, 579–610, 2000.

    Article  MATH  Google Scholar 

  21. Luo, C.-H., Rudy, Y., A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circulation Res., 74, 1071–1096, 1994.

    Google Scholar 

  22. Mohrman, D. E., Heller, L. J., Cardiovascular Physiology, McGraw-Hill, New York, 2003

    Google Scholar 

  23. Myerburg, R. J., Castellanos, A., Cardiac arrest and sudden death, in Heart Disease: A Textbook of Cardiovascular Medicine, ed. Braunwald E., pp. 742–779, WB Saunders, Philadelphia, PA, 1997.

    Google Scholar 

  24. Nagumo, J., Arimoto, S., Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 50, 2061–2070, 1962.

    Article  Google Scholar 

  25. Noble, D., Cardiac action and pacemaker potentials based on the Hodgkin–Huxley equations, Nature, 188, 495–497, 1960.

    Article  Google Scholar 

  26. Noble, D., A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pace-maker potentials, J. Physiol., 160, 317–352, 1962.

    Google Scholar 

  27. Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., Giles, W. R., Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization, Circulation, 82, 63–81, 1998.

    Google Scholar 

  28. van der Pol, B., van der Mark, J., The heartbeat considered as a relaxation oscillation, and an electrical model of the heart, Lond. Edinb. Dublin Phil. Mag. J. Sci., 6, 763–775, 1928.

    Google Scholar 

  29. Pontryagin, L. S., The asymptotic behaviour of systems of differential equations with a small parameter multiplying the highest derivatives, Izv. Akad. Nauk SSSR, Ser. Mat., 21, 107–155, 1957.

    MathSciNet  Google Scholar 

  30. Simitev, R. D., Biktashev, V. N., Conditions for propagation and block of excitation in an asymptotic model of atrial tissue, Biophys. J., 90, 2258–2269, 2006.

    Article  Google Scholar 

  31. Spooner, P. M., Rosen, M. R., eds., Foundations of Cardiac Arrhythmias: Basic Concepts and Clinical Approaches, Marcel Dekker, New York, 2000.

    Google Scholar 

  32. Suckley, R., Biktashev, V. N., The asymptotic structure of the Hodgkin–Huxley equations, Int. J. Bif. Chaos, 13(12), 3805–3826, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  33. Suckley, R., Biktashev, V. N., Comparison of asymptotics of heart and nerve excitability, Phys. Rev. E, 68, 011902, 2003.

    Article  MathSciNet  Google Scholar 

  34. Tikhonov, A. N., Systems of differential equations, containing small parameters at the derivatives, Mat. Sbornik, 31, 575–586, 1957.

    Google Scholar 

  35. Varghese, A., Winslow, R. L., Dynamics of abnormal pacemaking activity in cardiac Purkinje fibers, J. Theor. Biol., 168, 407–420, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Simitev, R.D., Biktashev, V.N. (2008). An Analytically Solvable Asymptotic Model of Atrial Excitability. In: Deutsch, A., et al. Mathematical Modeling of Biological Systems, Volume II. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4556-4_26

Download citation

Publish with us

Policies and ethics