Skip to main content

Long-Range Chromatin Interactions in Cells

  • Chapter
  • First Online:
Biophysics of DNA-Protein Interactions

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1879 Accesses

Abstract

Interactions between long-range genetic elements play key roles in regulating gene expression in a spatially and temporally restricted manner during differentiation and development in higher eukaryotic cells. With the aid of new technologies for analyzing chromatin structural organization, new long-range chromatin interactions have been discovered and interaction networks have been proposed. The underlying mechanisms by which these interactions influence gene expression have been explored at the level of three-dimensional chromatin structure. It has been possible to delineate the critical roles of two global regulator proteins, special AT-rich binding protein 1 and CTCF, in bridging long-range chromatin loops. This chapter discusses potential contributions of transcription factors, regulatory adaptor proteins, histone modifications, and noncoding RNAs in the formation of long-range chromatin interactions. The cellular consequences of chromatin topology regulation as well as methodologies used in the study of chromatin conformation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans K et al (2007) A comparative study of S/MAR prediction tools. BMC Bioinformatics 8:71

    Article  Google Scholar 

  2. Girod PA et al (2007) Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 4(9):747–753

    Article  Google Scholar 

  3. Bode J et al (2006) Correlations between scaffold/matrix attachment region (S/MAR) binding activity and DNA duplex destabilization energy. J Mol Biol 358(2):597–613

    Article  Google Scholar 

  4. Kleinjan DA, Lettice LA (2008) Long-range gene control and genetic disease. Adv Genet 61:339–388

    Article  Google Scholar 

  5. Dekker J et al (2002) Capturing chromosome conformation. Science 295(5558):1306–1311

    Article  ADS  Google Scholar 

  6. Lieb JD et al (2001) Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 28(4):327–334

    Article  Google Scholar 

  7. Ren B et al (2000) Genome-wide location and function of DNA binding proteins. Science 290(5500):2306–2309

    Article  ADS  Google Scholar 

  8. Dostie J, Dekker J (2007) Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc 2(4):988–1002

    Article  Google Scholar 

  9. Hagege H et al (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2(7):1722–1733

    Article  Google Scholar 

  10. Simonis M et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38(11):1348–1354

    Article  Google Scholar 

  11. Tiwari VK et al (2008) A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations. Genome Res 18(7):1171–1179

    Article  Google Scholar 

  12. Bulger M, Groudine M (1999) Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13(19):2465–2477

    Article  Google Scholar 

  13. Blackwood EM, Kadonaga JT (1998) Going the distance: a current view of enhancer action. Science 281(5373):60–63

    Article  Google Scholar 

  14. Dean A (2006) On a chromosome far, far away: LCRs and gene expression. Trends Genet 22(1):38–45

    Article  Google Scholar 

  15. Carter D et al (2002) Long-range chromatin regulatory interactions in vivo. Nat Genet 32(4):623–626

    Article  Google Scholar 

  16. Di LJ et al (2008) Identification of long range regulatory elements of mouse alpha-globin gene cluster by quantitative associated chromatin trap (QACT). J Cell Biochem 105(1):301–312

    Article  Google Scholar 

  17. Dostie J et al (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16(10):1299–1309

    Article  Google Scholar 

  18. Schleif R (1992) DNA looping. Annu Rev Biochem 61:199–223

    Article  Google Scholar 

  19. Palstra RJ et al (2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35(2):190–194

    Article  Google Scholar 

  20. Tolhuis B et al (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10(6):1453–1465

    Article  Google Scholar 

  21. Zhou GL et al (2006) Active chromatin hub of the mouse alpha-globin locus forms in a transcription factory of clustered housekeeping genes. Mol Cell Biol 26(13):5096–5105

    Article  Google Scholar 

  22. Kato Y, Sasaki H (2005) Imprinting and looping: epigenetic marks control interactions between regulatory elements. Bioessays 27(1):1–4

    Article  MathSciNet  Google Scholar 

  23. Lopes S et al (2003) Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions. Hum Mol Genet 12(3):295–305

    Article  MathSciNet  Google Scholar 

  24. Murrell A, Heeson S, Reik W (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet 36(8):889–893

    Article  Google Scholar 

  25. Tiwari VK et al (2008) PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 6(12):2911–2927

    Article  Google Scholar 

  26. Zhao Z et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38(11):1341–1347

    Article  Google Scholar 

  27. Ling JQ et al (2006) CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312(5771):269–272

    Article  ADS  Google Scholar 

  28. Lomvardas S et al (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126(2):403–413

    Article  Google Scholar 

  29. Bacher CP et al (2006) Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat Cell Biol 8(3):293–299

    Article  Google Scholar 

  30. Kurukuti S et al (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci USA 103(28):10684–10689

    Article  ADS  Google Scholar 

  31. Wurtele H, Chartrand P (2006) Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended chromosome conformation capture methodology. Chromosome Res 14(5):477–495

    Article  Google Scholar 

  32. Cai S, Lee CC, Kohwi-Shigematsu T (2006) SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet 38(11):1278–1288

    Article  Google Scholar 

  33. Spilianakis CG, Flavell RA (2004) Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol 5(10):1017–1027

    Article  Google Scholar 

  34. Spilianakis CG et al (2005) Interchromosomal associations between alternatively expressed loci. Nature 435(7042):637–645

    Article  ADS  Google Scholar 

  35. Horike S et al (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37(1):31–40

    Google Scholar 

  36. Kumar PP et al (2007) Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat Cell Biol 9(1):45–56

    Article  Google Scholar 

  37. Ottaviani D et al (2008) Reconfiguration of genomic anchors upon transcriptional activation of the human major histocompatibility complex. Genome Res 18(11):1778–1786

    Article  Google Scholar 

  38. Filippova GN (2008) Genetics and epigenetics of the multifunctional protein CTCF. Curr Top Dev Biol 80:337–360

    Article  Google Scholar 

  39. Galande S et al (2007) The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr Opin Genet Dev 17(5):408–414

    Article  Google Scholar 

  40. Cai S, Han HJ, Kohwi-Shigematsu T (2003) Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet 34(1):42–51

    Article  Google Scholar 

  41. Yamasaki K et al (2007) Structural basis for recognition of the matrix attachment region of DNA by transcription factor SATB1. Nucleic Acids Res 35(15):5073–5084

    Article  Google Scholar 

  42. Galande S et al (2001) SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol Cell Biol 21(16):5591–5604

    Article  Google Scholar 

  43. Purbey PK et al (2008) PDZ domain-mediated dimerization and homeodomain-directed specificity are required for high-affinity DNA binding by SATB1. Nucleic Acids Res 36(7):2107–2122

    Article  Google Scholar 

  44. Yasui D et al (2002) SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419(6907):641–645

    Article  ADS  Google Scholar 

  45. Pavan Kumar P et al (2006) Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Mol Cell 22(2):231–243

    Article  Google Scholar 

  46. Purbey PK et al (2009) Acetylation-dependent interaction of SATB1 and CtBP1 mediates transcriptional repression by SATB1. Mol Cell Biol 29(5):1321–1337

    Article  Google Scholar 

  47. Wen J et al (2005) SATB1 family protein expressed during early erythroid differentiation modifies globin gene expression. Blood 105(8):3330–3339

    Article  Google Scholar 

  48. Wang L et al (2009) Inter-MAR association contributes to transcriptionally active looping events in human beta-globin gene cluster. PLoS ONE 4(2):e4629

    Article  ADS  Google Scholar 

  49. Brown CR et al (2008) Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev 22(5):627–639

    Article  Google Scholar 

  50. Yusufzai TM et al (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 13(2):291–298

    Article  Google Scholar 

  51. Lewis A, Murrell A (2004) Genomic imprinting: CTCF protects the boundaries. Curr Biol 14(7):R284–R286

    Article  Google Scholar 

  52. Anguita E et al (2004) Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. Embo J 23(14):2841–2852

    Article  Google Scholar 

  53. Du MJ et al (2008) MafK/NF-E2 p18 is required for beta-globin genes activation by mediating the proximity of LCR and active beta-globin genes in MEL cell line. Int J Biochem Cell Biol 40(8):1481–1493

    Article  Google Scholar 

  54. Kooren J et al (2007) Beta-globin active chromatin Hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice. J Biol Chem 282(22):16544–16552

    Article  Google Scholar 

  55. Vakoc CR et al (2005) Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell 17(3):453–462

    Article  Google Scholar 

  56. Li T et al (2008) CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop. Mol Cell Biol 28(20):6473–6482

    Article  Google Scholar 

  57. Yasui DH et al (2007) Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci USA 104(49):19416–19421

    Article  ADS  Google Scholar 

  58. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(1):R17–R29

    Article  Google Scholar 

  59. Mainguy G et al (2007) Extensive polycistronism and antisense transcription in the Mammalian Hox clusters. PLoS ONE 2(4):e356

    Article  ADS  Google Scholar 

  60. Katayama S et al (2005) Antisense transcription in the mammalian transcriptome. Science 309(5740):1564–1566

    Article  ADS  Google Scholar 

  61. Xu N et al (2007) Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat Genet 39(11):1390–1396

    Article  Google Scholar 

  62. Zhao J et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756

    Article  ADS  Google Scholar 

  63. Mohammad F et al (2008) Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol Cell Biol 28(11):3713–3728

    Article  MathSciNet  Google Scholar 

  64. Boumil RM, Lee JT (2001) Forty years of decoding the silence in X-chromosome inactivation. Hum Mol Genet 10(20):2225–2232

    Article  Google Scholar 

  65. Clerc P, Avner P (2003) Multiple elements within the Xic regulate random X inactivation in mice. Semin Cell Dev Biol 14(1):85–92

    Article  Google Scholar 

  66. Vernimmen D et al (2007) Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. Embo J 26(8):2041–2051

    Article  Google Scholar 

  67. Fields PE et al (2004) Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity 21(6):865–876

    Article  Google Scholar 

  68. Lee GR et al (2003) Regulation of the Th2 cytokine locus by a locus control region. Immunity 19(1):145–153

    Article  Google Scholar 

  69. Eivazova ER, Aune TM (2004) Dynamic alterations in the conformation of the Ifng gene region during T helper cell differentiation. Proc Natl Acad Sci USA 101(1):251–256

    Article  ADS  Google Scholar 

  70. Liu Z, Garrard WT (2005) Long-range interactions between three transcriptional enhancers, active Vkappa gene promoters, and a 3′ boundary sequence spanning 46 kilobases. Mol Cell Biol 25(8):3220–3231

    Article  Google Scholar 

  71. Hakim O et al (2009) Glucocorticoid receptor activation of the Ciz1-Lcn2 locus by long range interactions. J Biol Chem 284(10):6048–6052

    Article  Google Scholar 

  72. Tsai CL et al (2008) Higher order chromatin structure at the X-inactivation center via looping DNA. Dev Biol 319(2):416–425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Ling Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhou, G.L., Xin, L., De Pei Liu (2010). Long-Range Chromatin Interactions in Cells. In: Williams, M., Maher, L. (eds) Biophysics of DNA-Protein Interactions. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92808-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92808-1_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92807-4

  • Online ISBN: 978-0-387-92808-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics