Skip to main content

Dynamics of Protein–ssDNA Interactions in the Bacteriophage T4 Homologous Recombination System

  • Chapter
  • First Online:
Biophysics of DNA-Protein Interactions

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1867 Accesses

Abstract

Homologous recombination plays critical roles in maintaining genetic diversity and genome stability through processes such as meiosis and DNA double-strand break repair. The central process in homologous recombination is DNA strand exchange, in which single-stranded DNA (ssDNA) from the resected, broken end of one chromosome invades the homologous double-stranded DNA (dsDNA) of a sister chromosome. This reaction is catalyzed by presynaptic filaments – filamentous complexes of core recombination proteins bound to the invading ssDNA. Successful recombination depends on the coordinated assembly and dynamics of these protein–ssDNA filaments. Studies of the bacteriophage T4 core recombination machinery (UvsX recombinase, Gp32 ssDNA-binding protein, UvsY recombination mediator protein) have provided valuable insights on the biochemistry and biophysics of protein–ssDNA interactions in homologous recombination. In this chapter, we explore current models for the assembly and dynamic instability of the T4 presynaptic filament and show how mechanistic features of this system may be conserved in other recombination systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jasin M (2002) Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21(58):8981–8993

    Article  Google Scholar 

  2. Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66(4):630–670, table of contents

    Article  Google Scholar 

  3. Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M (2001) Double-strand breaks and tumorigenesis. Trends Cell Biol 11(11):S52–S59

    Article  Google Scholar 

  4. Sun H, Treco D, Szostak JW (1991) Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64(6):1155–1161

    Article  Google Scholar 

  5. Haber JE (1995) In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays 17(7):609–620

    Article  Google Scholar 

  6. Bianco PR, Tracy RB, Kowalczykowski SC (1998) DNA strand exchange proteins: a biochemical and physical comparison. Front Biosci 3:570–603

    Google Scholar 

  7. Thacker J (1999) A surfeit of RAD51-like genes? Trends Genet 15(5):166–168

    Article  Google Scholar 

  8. McRobbie AM, Carter LG, Kerou M, Liu H, McMahon SA, Johnson KA, Oke M, Naismith JH, White MF (2009) Structural and functional characterisation of a conserved archaeal RadA paralog with antirecombinase activity. J Mol Biol 389(4):661–673

    Article  Google Scholar 

  9. Cox MM (2007) Motoring along with the bacterial RecA protein. Nat Rev Mol Cell Biol 8(2):127–138

    Article  Google Scholar 

  10. Haber JE (1997) A super new twist on the initiation of meiotic recombination. Cell 89(2): 163–166

    Article  Google Scholar 

  11. Konforti BB, Davis RW (1990) The preference for a 3′ homologous end is intrinsic to RecA-promoted strand exchange. J Biol Chem 265(12):6916–6920

    Google Scholar 

  12. Sung P, Robberson DL (1995) DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82(3):453–461

    Article  Google Scholar 

  13. Oh SD, Lao JP, Hwang PY, Taylor AF, Smith GR, Hunter N (2007) BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130(2):259–272

    Article  Google Scholar 

  14. Salinas F, Kodadek T (1995) Phage T4 homologous strand exchange: a DNA helicase, not the strand transferase, drives polar branch migration. Cell 82(1):111–119

    Article  Google Scholar 

  15. Beernink HT, Morrical SW (1999) RMPs: recombination/replication mediator proteins. Trends Biochem Sci 24(10):385–389

    Article  Google Scholar 

  16. Wadsworth RI, White MF (2001) Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus. Nucleic Acids Res 29(4):914–920

    Article  Google Scholar 

  17. Kerr ID, Wadsworth RI, Cubeddu L, Blankenfeldt W, Naismith JH, White MF (2003) Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein. EMBO J 22(11):2561–2570

    Article  Google Scholar 

  18. Sung P, Krejci L, Van Komen S, Sehorn MG (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278(44):42729–42732

    Article  Google Scholar 

  19. Morimatsu K, Kowalczykowski SC (2003) RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11(5):1337–1347

    Article  Google Scholar 

  20. New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC (1998) Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391(6665):407–410

    Article  ADS  Google Scholar 

  21. Shinohara A, Ogawa T (1998) Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391(6665):404–407

    Article  ADS  Google Scholar 

  22. Yang H, Li Q, Fan J, Holloman WK, Pavletich NP (2005) The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature 433(7026):653–657

    Article  ADS  Google Scholar 

  23. Sung P (1997) Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 11(9):1111–1121

    Article  Google Scholar 

  24. Komori K, Miyata T, DiRuggiero J, Holley-Shanks R, Hayashi I, Cann IK, Mayanagi K, Shinagawa H, Ishino Y (2000) Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus. J Biol Chem 275(43):33782–33790

    Article  Google Scholar 

  25. DiRuggiero J, Brown JR, Bogert AP, Robb FT (1999) DNA repair systems in archaea: mementos from the last universal common ancestor? J Mol Evol 49(4):474–484

    Article  Google Scholar 

  26. Bleuit JS, Xu H, Ma Y, Wang T, Liu J, Morrical SW (2001) Mediator proteins orchestrate enzyme-ssDNA assembly during T4 recombination-dependent DNA replication and repair. Proc Natl Acad Sci USA 98(15):8298–8305

    Article  ADS  Google Scholar 

  27. Mosig G (1994) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 54–82

    Google Scholar 

  28. Kreuzer KN (2000) Recombination-dependent DNA replication in phage T4. Trends Biochem Sci 25(4):165–173

    Article  MathSciNet  Google Scholar 

  29. Kodadek T (1990) The role of the bacteriophage T4 gene 32 protein in homologous pairing. J Biol Chem 265(34):20966–20969

    Google Scholar 

  30. Kodadek T, Gan DC, Stemke-Hale K (1989) The phage T4 uvsY recombination protein stabilizes presynaptic filaments. J Biol Chem 264(28):16451–16457

    Google Scholar 

  31. Griffith J, Formosa T (1985) The uvsX protein of bacteriophage T4 arranges single-stranded and double-stranded DNA into similar helical nucleoprotein filaments. J Biol Chem 260(7): 4484–4491

    Google Scholar 

  32. Farb JN, Morrical SW (2009) Functional complementation of UvsX and UvsY mutations in the mediation of T4 homologous recombination. Nucleic Acids Res 37(7):2336–2345

    Article  Google Scholar 

  33. Liu J, Qian N, Morrical SW (2006) Dynamics of bacteriophage T4 presynaptic filament assembly from extrinsic fluorescence measurements of Gp32-single-stranded DNA interactions. J Biol Chem 281(36):26308–26319

    Article  Google Scholar 

  34. Harris LD, Griffith JD (1989) UvsY protein of bacteriophage T4 is an accessory protein for in vitro catalysis of strand exchange. J Mol Biol 206(1):19–27

    Article  Google Scholar 

  35. Yassa DS, Chou KM, Morrical SW (1997) Characterization of an amino-terminal fragment of the bacteriophage T4 uvsY recombination protein. Biochimie 79(5):275–285

    Article  Google Scholar 

  36. Ando RA, Morrical SW (1998) Single-stranded DNA binding properties of the UvsX recombinase of bacteriophage T4: binding parameters and effects of nucleotides. J Mol Biol 283(4):785–796

    Article  Google Scholar 

  37. Liu J, Bond JP, Morrical SW (2006) Mechanism of presynaptic filament stabilization by the bacteriophage T4 UvsY recombination mediator protein. Biochemistry 45(17):5493–5502

    Article  Google Scholar 

  38. Formosa T, Alberts BM (1986) Purification and characterization of the T4 bacteriophage uvsX protein. J Biol Chem 261(13):6107–6118

    Google Scholar 

  39. Pugh BF, Cox MM (1988) High salt activation of recA protein ATPase in the absence of DNA. J Biol Chem 263(1):76–83

    Google Scholar 

  40. Farb JN, Morrical SW (2009) Role of allosteric switch residue histidine 195 in maintaining active-site asymmetry in presynaptic filaments of bacteriophage T4 UvsX recombinase. J Mol Biol 385(2):393–404

    Article  Google Scholar 

  41. Conway AB, Lynch TW, Zhang Y, Fortin GS, Fung CW, Symington LS, Rice PA (2004) Crystal structure of a Rad51 filament. Nat Struct Mol Biol 11(8):791–796

    Article  Google Scholar 

  42. Lauder SD, Kowalczykowski SC (1991) Asymmetry in the recA protein-DNA filament. J Biol Chem 266(9):5450–5458

    Google Scholar 

  43. Kodadek T, Wong ML, Alberts BM (1988) The mechanism of homologous DNA strand exchange catalyzed by the bacteriophage T4 uvsX and gene 32 proteins. J Biol Chem 263(19):9427–9436

    Google Scholar 

  44. Riddles PW, Lehman IR (1985) The formation of plectonemic joints by the recA protein of Escherichia coli. Requirement for ATP hydrolysis. J Biol Chem 260(1):170–173

    Google Scholar 

  45. Kowalczykowski SC, Krupp RA (1995) DNA-strand exchange promoted by RecA protein in the absence of ATP: implications for the mechanism of energy transduction in protein-promoted nucleic acid transactions. Proc Natl Acad Sci USA 92(8):3478–3482

    Article  ADS  Google Scholar 

  46. Yonesaki T, Minagawa T (1989) Synergistic action of three recombination gene products of bacteriophage T4, uvsX, uvsY, and gene 32 proteins. J Biol Chem 264(14):7814–7820

    Google Scholar 

  47. Melamede RJ, Wallace SS (1977) Properties of the nonlethal recombinational repair x and y mutants of bacteriophage T4. II. DNA synthesis. J Virol 24(1):28–40

    Google Scholar 

  48. Melamede RJ, Wallace SS (1980) Properties of the nonlethal recombinational repair deficient mutants of bacteriophage T4. III. DNA replicative intermediates and T4w. Mol Gen Genet 177(3):501–509

    Article  Google Scholar 

  49. Kreuzer KN, Morrical SM (1994) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 28–42

    Google Scholar 

  50. Chase JW, Williams KR (1986) Single-stranded DNA binding proteins required for DNA replication. Annu Rev Biochem 55:103–136

    Article  Google Scholar 

  51. Karpel R, Karpel RL (1990) The biology of nonspecific DNA-protein interactions. CRC, Boca Raton, FL, pp 103–130

    Google Scholar 

  52. Shamoo Y, Friedman AM, Parsons MR, Konigsberg WH, Steitz TA (1995) Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature 376(6538):362–366

    Article  ADS  Google Scholar 

  53. Williams KR, Shamoo Y, Spicer EK, Coleman JE, Konigsberg WH (1994) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 301–304

    Google Scholar 

  54. Giedroc DP, Khan R, Barnhart K (1990) Overexpression, purification, and characterization of recombinant T4 gene 32 protein22-301 (g32P-B). J Biol Chem 265(20):11444–11455

    Google Scholar 

  55. Xu H, Wang Y, Bleuit JS, Morrical SW (2001) Helicase assembly protein Gp59 of bacteriophage T4: fluorescence anisotropy and sedimentation studies of complexes formed with derivatives of Gp32, the phage ssDNA binding protein. Biochemistry 40(25):7651–7661

    Article  Google Scholar 

  56. Hurley JM, Chervitz SA, Jarvis TC, Singer BS, Gold L (1993) Assembly of the bacteriophage T4 replication machine requires the acidic carboxy terminus of gene 32 protein. J Mol Biol 229(2):398–418

    Article  Google Scholar 

  57. Jiang H, Giedroc D, Kodadek T (1993) The role of protein-protein interactions in the assembly of the presynaptic filament for T4 homologous recombination. J Biol Chem 268(11): 7904–7911

    Google Scholar 

  58. Ma Y, Wang T, Villemain JL, Giedroc DP, Morrical SW (2004) Dual functions of single-stranded DNA-binding protein in helicase loading at the bacteriophage T4 DNA replication fork. J Biol Chem 279(18):19035–19045

    Article  Google Scholar 

  59. Morrical SW, Beernink HT, Dash A, Hempstead K (1996) The gene 59 protein of bacteriophage T4. Characterization of protein-protein interactions with gene 32 protein, the T4 single-stranded DNA binding protein. J Biol Chem 271(33):20198–20207

    Article  Google Scholar 

  60. Kowalczykowski SC (1990) Thermodynamic data for protein-nucleic acid interactions. In: Saenger W (ed) Landolt-Bornstein: numerical data and functional relationships in science and technology. Springer, Berlin, pp 244–263

    Google Scholar 

  61. Newport JW, Lonberg N, Kowalczykowski SC, von Hippel PH (1981) Interactions of bacteriophage T4-coded gene 32 protein with nucleic acids. II. Specificity of binding to DNA and RNA. J Mol Biol 145(1):105–121

    Article  Google Scholar 

  62. Kowalczykowski SC, Lonberg N, Newport JW, von Hippel PH (1981) Interactions of bacteriophage T4-coded gene 32 protein with nucleic acids. I. Characterization of the binding interactions. J Mol Biol 145(1):75–104

    Article  Google Scholar 

  63. Rouzina I, Pant K, Karpel RL, Williams MC (2005) Theory of electrostatically regulated binding of T4 gene 32 protein to single- and double-stranded DNA. Biophys J 89(3): 1941–1956

    Article  Google Scholar 

  64. Pant K, Karpel RL, Rouzina I, Williams MC (2005) Salt dependent binding of T4 gene 32 protein to single and double-stranded DNA: single molecule force spectroscopy measurements. J Mol Biol 349(2):317–330

    Article  Google Scholar 

  65. Shokri L, Rouzina I, Williams MC (2009) Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA. Phys Biol 6(2):25002

    Article  Google Scholar 

  66. Morrical SW, Alberts BM (1990) The UvsY protein of bacteriophage T4 modulates recombination-dependent DNA synthesis in vitro. J Biol Chem 265(25):15096–15103

    Google Scholar 

  67. Beernink HT, Morrical SW (1998) The uvsY recombination protein of bacteriophage T4 forms hexamers in the presence and absence of single-stranded DNA. Biochemistry 37(16):5673–5681

    Article  Google Scholar 

  68. Sweezy MA, Morrical SW (1997) Single-stranded DNA binding properties of the uvsY recombination protein of bacteriophage T4. J Mol Biol 266(5):927–938

    Article  Google Scholar 

  69. Xu H, Beernink HT, Morrical SW (2010) DNA binding properties of T4 UvsY recombination mediator protein: polynudeotide wrapping promotes high-affinity binding to ssDNA. Nucleic Acids Res 38(14):4821–4833

    Google Scholar 

  70. Bleuit JS, Ma Y, Munro J, Morrical SW (2004) Mutations in a conserved motif inhibit single-stranded DNA binding and recombination mediator activities of bacteriophage T4 UvsY protein. J Biol Chem 279(7):6077–6086

    Article  Google Scholar 

  71. Pant K, Shokri L, Karpel RL, Morrical SW, Williams MC (2008) Modulation of T4 gene 32 protein DNA binding activity by the recombination mediator protein UvsY. J Mol Biol 380(5):799–811

    Article  Google Scholar 

  72. Ando RA, Morrical SW (1999) Relationship between hexamerization and ssDNA binding affinity in the uvsY recombination protein of bacteriophage T4. Biochemistry 38(50):16589–16598

    Article  Google Scholar 

  73. McGhee JD (1976) Theoretical calculations of the helix-coil transition of DNA in the presence of large, cooperatively binding ligands. Biopolymers 15(7):1345–1375

    Article  Google Scholar 

  74. Morrical SW, Wong ML, Alberts BM (1991) Amplification of snap-back DNA synthesis reactions by the uvsX recombinase of bacteriophage T4. J Biol Chem 266(21):14031–14038

    Google Scholar 

  75. Kodadek T (1990) Functional interactions between phage T4 and E. coli DNA-binding proteins during the presynapsis phase of homologous recombination. Biochem Biophys Res Commun 172(2):804–810

    Article  Google Scholar 

  76. Sweezy MA, Morrical SW (1999) Biochemical interactions within a ternary complex of the bacteriophage T4 recombination proteins uvsY and gp32 bound to single-stranded DNA. Biochemistry 38(3):936–944

    Article  Google Scholar 

  77. Hashimoto K, Yonesaki T (1991) The characterization of a complex of three bacteriophage T4 recombination proteins, uvsX protein, uvsY protein, and gene 32 protein, on single-stranded DNA. J Biol Chem 266(8):4883–4888

    Google Scholar 

  78. Echols H (1986) Multiple DNA-protein interactions governing high-precision DNA transactions. Science 233(4768):1050–1056

    Article  ADS  Google Scholar 

  79. Lohman TM, Kowalczykowski SC (1981) Kinetics and mechanism of the association of the bacteriophage T4 gene 32 (helix destabilizing) protein with single-stranded nucleic acids. Evidence for protein translocation. J Mol Biol 152(1):67–109

    Article  Google Scholar 

  80. Liu J, Berger C, Morrical SW Kinetics of presynaptic filament assembly in the presence of SSB and mediator proteins. Manuscript under revision

    Google Scholar 

  81. Hilario J, Amitani I, Baskin RJ, Kowalczykowski SC (2009) Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules. Proc Natl Acad Sci USA 106(2): 361–368

    Article  ADS  Google Scholar 

  82. Mickelson C, Wiberg JS (1981) Membrane-associated DNase activity controlled by genes 46 and 47 of bacteriophage T4D and elevated DNase activity associated with the T4 das mutation. J Virol 40(1):65–77

    Google Scholar 

  83. Cromie GA, Connelly JC, Leach DR (2001) Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol Cell 8(6):1163–1174

    Article  Google Scholar 

  84. Anderson DG, Kowalczykowski SC (1997) The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell 90(1):77–86

    Article  Google Scholar 

  85. Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T, Sung P (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423(6937):305–309

    Article  ADS  Google Scholar 

  86. Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423(6937):309–312

    Article  ADS  Google Scholar 

  87. Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA (2005) UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24(1):180–189

    Article  Google Scholar 

  88. Jongeneel CV, Formosa T, Alberts BM (1984) Purification and characterization of the bacteriophage T4 dda protein. A DNA helicase that associates with the viral helix-destabilizing protein. J Biol Chem 259(20):12925–12932

    Google Scholar 

  89. Nanduri B, Byrd AK, Eoff RL, Tackett AJ, Raney KD (2002) Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor. Proc Natl Acad Sci USA 99(23):14722–14727

    Article  ADS  Google Scholar 

  90. Raney KD, Benkovic SJ (1995) Bacteriophage T4 Dda helicase translocates in a unidirectional fashion on single-stranded DNA. J Biol Chem 270(38):22236–22242

    Article  Google Scholar 

  91. Gauss P, Park K, Spencer TE, Hacker KJ (1994) DNA helicase requirements for DNA replication during bacteriophage T4 infection. J Bacteriol 176(6):1667–1672

    Google Scholar 

  92. Barry J, Alberts B (1994) A role for two DNA helicases in the replication of T4 bacteriophage DNA. J Biol Chem 269(52):33063–33068

    Google Scholar 

  93. Bedinger P, Hochstrasser M, Jongeneel CV, Alberts BM (1983) Properties of the T4 bacteriophage DNA replication apparatus: the T4 dda DNA helicase is required to pass a bound RNA polymerase molecule. Cell 34(1):115–123

    Article  Google Scholar 

  94. Formosa T, Alberts BM (1984) The use of affinity chromatography to study proteins involved in bacteriophage T4 genetic recombination. Cold Spring Harb Symp Quant Biol 49:363–370

    Article  Google Scholar 

  95. Kodadek T, Alberts BM (1987) Stimulation of protein-directed strand exchange by a DNA helicase. Nature 326(6110):312–314

    Article  ADS  Google Scholar 

  96. Kadyrov FA, Drake JW (2004) UvsX recombinase and Dda helicase rescue stalled bacteriophage T4 DNA replication forks in vitro. J Biol Chem 279(34):35735–35740

    Article  Google Scholar 

  97. Solinger JA, Kiianitsa K, Heyer WD (2002) Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10(5):1175–1188

    Article  Google Scholar 

  98. van Mameren J, Modesti M, Kanaar R, Wyman C, Peterman EJ, Wuite GJ (2009) Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. Nature 457(7230):745–748

    Article  ADS  Google Scholar 

  99. Scully R (2000) Role of BRCA gene dysfunction in breast and ovarian cancer predisposition. Breast Cancer Res 2(5):324–330

    Article  Google Scholar 

  100. Yu VP, Koehler M, Steinlein C, Schmid M, Hanakahi LA, van Gool AJ, West SC, Venkitaraman AR (2000) Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev 14(11):1400–1406

    Google Scholar 

  101. Formosa T, Alberts BM (1986) DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell 47(5):793–806

    Article  Google Scholar 

  102. Chen Z, Yang H, Pavletich NP (2008) Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453(7194):489–494

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott W. Morrical .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, J., Morrical, S.W. (2010). Dynamics of Protein–ssDNA Interactions in the Bacteriophage T4 Homologous Recombination System. In: Williams, M., Maher, L. (eds) Biophysics of DNA-Protein Interactions. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92808-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92808-1_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-92807-4

  • Online ISBN: 978-0-387-92808-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics