Skip to main content

The Key Role of Nanoparticles in Reactivity of 3D Metal Oxides Toward Lithium

  • Chapter
Lithium Batteries

In response to the needs of today's mobile society and the emergence of ecological concerns such as global warming, one of the major technological challenges in this new century is undoubtedly energy generation and storage. Ninety percent of today's electrical power generation still comes from fossil fuels, and we are constantly struggling to reduce the carbon dioxide emissions per unit of electric power so as to help curtail global warming. It is now mandatory that new and environmentally friendly energy/storage sources be found. Hence, the fast developing research in that field involving, among others, fuel cells, primary and rechargeable batteries, and supercapacitors. As a result of this worldwide ecological priority, political concerns have come into play, and science has suffered from prioritisation based on both industrial pressure and media reports, rather than on the clear and rigorous scientific identification of technological stoppers inherent in each storage system. Needless to say, this applies to battery systems as well.

In the past two decades, intensive efforts have given birth to the rechargeable Li-ion battery technology that has dominated the market place, and can be regarded as one of the great successes in modern electrochemistry to date. But these Li-based systems still suffer from the lack of suitable electrode and electrolyte materials, which they require if they are ever to accommodate the increasing user's demands. Aware of this limitation, chemists have been acting at several levels to incrementally improve the Li-ion performance. They have followed a dual approach, dealing with either positive or negative electrode materials, with efforts centered around: 1) the modification of existing materials through cationic/anionic substitution, texture modification and surface treatments, 2) the making of composite electrodes or electrolytes made of several chemical components, and 3) the design of new electrode materials. Such approaches were pursued at the macroscopic scale on electrode materials1–3 having a dual electronic-ionic conductivity, a void structure to insert/de-insert Li ions, or the ability to alloy with Li. They led to the identification of layered LiMn1−x Cr x 02 oxides4–5 or three-dimensional iron phosphates (LiFeP04)6, that stand as a possible alternative to LiCo02 or negative electrode materials such as tin-based oxides (Sn02, SnO),7–8 intermetallics (CuSb9, Cu6Sn5 10, ...), nitrides11 and phosphides,12'13 which could be used as alternatives to carbonaceous materials, once their initial large irreversibility and poor cycle life have been overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.B. Armand, New Electrode Materials, in Fast Ion Transport in Solids (Van Gool, W., Ed., North Holland, Amsterdam) (1973) 665.

    Google Scholar 

  2. M. S. Whittingham, Science 192 (1976) 1226 .

    Article  Google Scholar 

  3. D. W. Murphy, P.A. Christian, Science 205 (1979) 651.

    Article  CAS  Google Scholar 

  4. A. R. Armstrong, P.G. Bruce, Nature 381 (1996) 499.

    Article  CAS  Google Scholar 

  5. B. Ammundsen, J. Desilvestro, T. Groutso, D. Hassel, J.B. Metson, E. Regan, R. Steiner, P.J. Pichering, ECS Fall Meeting, Hawai, Abstract N°138 (1999).

    Google Scholar 

  6. A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, J.B. Goodenough, J. Electrochem. Soc. 144(1997)1609.

    Article  CAS  Google Scholar 

  7. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276 (1997) 1395 .

    Article  CAS  Google Scholar 

  8. LA. Courtney, J.R. Dahn, J. Electrochem. Soc. 144 (1997) 2045.

    Article  CAS  Google Scholar 

  9. O. Mao, R.A. Dunlap, J.R. Dahn, J. Electrochem. Soc. 146 (1999) 405.

    Article  CAS  Google Scholar 

  10. K.D. Kepler, J.T. Vaughey, M.M. Thackeray, Electrochem. Solid-State Lett. 7 (1999) 307.

    Article  Google Scholar 

  11. N. Pereira, L.C. Klein, G.G.Amatucci, J. Electrochem. Soc. 149 (2002) A262.

    Article  CAS  Google Scholar 

  12. R. Alcantara, F. J. Fernandez-Madrigal, P. Lavela, J. L. Tirado, J-C. Jumas, J. Olivier-Fourcade, J. Mater. Chem. 9 (1999) 2517.

    Article  CAS  Google Scholar 

  13. V. Pralong, D.C.S. Souza, K.T. Leung, L.F. Nazar, Electrochem. Comm. 4 (2002) 516.

    Article  CAS  Google Scholar 

  14. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon., Nature 407 (2000) 496.

    Article  CAS  Google Scholar 

  15. G.G. Amatucci, J.M. Tarascon, L.C. Klein, J. Electrochem. Soc. 143 (1996) 1114.

    Article  CAS  Google Scholar 

  16. R. Bates, Y. Jumel, Lithium batteries J. P. Gabano Ed., Academic Press, London (1983).

    Google Scholar 

  17. Y. Matsuda, K. Teraji, Y. Takasu, Denki Kagaku 44 (1976) 363.

    CAS  Google Scholar 

  18. P. Novák, Electrochim. Acta 30 (1985) 1687.

    Article  Google Scholar 

  19. C. Sigala, D. Guyomard, Y. Piffard, M. Tournoux, C.R. Acad. Sci. Paris II 320 (1995) 523.

    CAS  Google Scholar 

  20. P. Poizot, E. Baudrin, S. Laruelle, L. Dupont, M. Touboul, J-M. Tarascon, Solid state Ionics 138 (2000) 31.

    Article  CAS  Google Scholar 

  21. E. Baudrin, S. Denis, F. Orsini, L. Seguin, M. Touboul, J-M. Tarascon, J. Mater. Chem. 9 (1999) 101.

    Article  CAS  Google Scholar 

  22. S. Denis, E. Baudrin, F. Orsini, G. Ouvrard, M. Touboul, J-M. Tarascon, J. Power Sources 81–82 (1999) 79.

    Google Scholar 

  23. 23 E. Baudrin, S. Denis, S. Laruelle, M. Touboul, J-M. Tarascon, Solid State Ionics 123 (1999) 139.

    Article  CAS  Google Scholar 

  24. S. Laruelle, P. Poizot, E. Baudrin, V. Briois, M. Touboul, J-M.Tarascon, J. Power Sources 97–98 (2001) 251.

    Google Scholar 

  25. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M.Tarascon., Nature 407 (2000) 496.

    Article  CAS  Google Scholar 

  26. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, B. Beaudoin, J-M. Tarascon, C.R. Acad. Sci. Paris II, 3 (2000) 681.

    CAS  Google Scholar 

  27. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J-M. Tarascon, Ionics 6 (2000) 321.

    Article  CAS  Google Scholar 

  28. S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, J-M. Tarascon, J. Electrochem. Soc. 148 (2001) A285.

    Article  CAS  Google Scholar 

  29. A. Débart, L. Dupont, P. Poizot, J-M. Tarascon, J. Electrochem. Soc. 148 (2001) A1266.

    Article  Google Scholar 

  30. P. Poizot, S. Laruelle, E. Baudrin, S. Denis, M. Touboul, J.-M. Tarascon, J. Power Sources 97–98 (2001) 235.

    Article  Google Scholar 

  31. N.N. Obrovac, R.A. Dunlap, R.J. Sanderson, J.R. Dahn, J. Electrochem. Soc. 148 (2001) A576.

    Article  CAS  Google Scholar 

  32. M.M. Thackeray, W.I.F. David, J.B. Goodenough, Mat. Res. Bull. 17 (1982) 785.

    Article  CAS  Google Scholar 

  33. M.M. Thackeray, W.I.F. David, J.B. Goodenough, J. Solid-State Chem. 55 (1984) 280.

    Article  CAS  Google Scholar 

  34. Standard Potentials in Aqueous Solution, A.J. Bard, R. Parsons, J. Jordan, Eds., Marcel Dekker (1985).

    Google Scholar 

  35. O. Kubaschewski, C. B. Alcok, Metallurgical Thermochemistry, 5th Edition, Pergamon Press (1987)

    Google Scholar 

  36. S. Laruelle, S. Grugeon, P. Poizot, M. Dollé, L. Dupont, J-M. Tarascon, J. Electrochem. Soc. 149 (2002) 627.

    Article  CAS  Google Scholar 

  37. P. Poizot, S. Laruelle, S. Grugeon, J-M. Tarascon, J. Electrochem. Soc. 149 (2002) 627.

    Article  CAS  Google Scholar 

  38. M. Dollé, P. Poizot, L. Dupont, J-M. Tarascon, Electrochem. Solid-State Lett. 5 (2002) A18.

    Article  Google Scholar 

  39. S. Grugeon, S. Laruelle, J.M. Tarascon, J. Electrochem. Soc. submitted (2002).

    Google Scholar 

  40. N. Pereira, L.C. Klein, G.G. Amatucci, ECS and ISE Joint International Meeting, San Francisco, CA, Sept. 2001, paper 203.

    Google Scholar 

  41. N.Pereira, L. Dupont, J.-M. Tarascon, L. Klein, G.G Amatucci, J. Electrochem. Soc. (in press).

    Google Scholar 

  42. F. Badway, I. Plitz, S. Grugeon, S. Laruelle, M. Dolle, A.S. Gozdz, J-M. Tarascon, Electrochem. Solid-State Lett. 5 (2002) A115.

    Article  CAS  Google Scholar 

  43. A. Delahaye-Vidal, B. Beaudoin, M. Figlarz, Reactivity Solids 2 (1986) 223.

    Article  CAS  Google Scholar 

  44. W.I.F. David, J.B. Goodenough, M.M. Thackeray, M.G.S.R. Thomas, Rev. Chim. Miner. 20(1983)636.

    CAS  Google Scholar 

  45. M.M. Thackeray, W.I.F. David, J.B. Goodenough, Mat. Res. Bull 17 (1982) 785.

    Article  CAS  Google Scholar 

  46. M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, Mat. Res. Bull. 18 (1983)461.

    Article  CAS  Google Scholar 

  47. M.M. Thackeray, S.D. Backer, K.T. Adendorff, Solid State Ionics 17 (1985) 175.

    Article  CAS  Google Scholar 

  48. D. Larcher, G. Sudant, J-B. Leriche, Y. Chabre, J-M. Tarascon, J. Electrochem. Soc. 149 (2002) A234.

    Article  CAS  Google Scholar 

  49. D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J-B. Leriche, J-M. Tarascon, J. Electrochem. Soc. submitted (2002).

    Google Scholar 

  50. M.M. Thackeray, J. Coetzer, Mat. Res. Bull 16 (1981) 591.

    Article  CAS  Google Scholar 

  51. J.-M.Tarascon, M. Morcrette, L. Dupont, Y. Chabre, C. Payen, D. Larcher, V. Pralong, j. Electrochem. Soc. in press (2003).

    Google Scholar 

  52. D. Larcher, L.Y. Beaulieu, O. Mao, A.E. George, J.R. Dahn, J. Electrochem. Soc. 147 (2000) 1703.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC 2003, First softcover printing

About this chapter

Cite this chapter

Tarascon, JM., Grugeon, S., Laruelle, S., Larcher, D., Poizot, P. (2009). The Key Role of Nanoparticles in Reactivity of 3D Metal Oxides Toward Lithium. In: Nazri, GA., Pistoia, G. (eds) Lithium Batteries. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-92675-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92675-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-92674-2

  • Online ISBN: 978-0-387-92675-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics