Skip to main content

Abstract

Integrated circuits (ICs) form the bases of all modern electronic products. However, an IC alone does not form a complete system and it must be integrated with other components into a system-level board. “Electronic Packaging” is defined as the bridge that interconnects the integrated circuits (ICs) and other components into a system-level board to form electronic products [1]. The packaging has four main functions: (1) signal distribution, mainly involving topological and electromagnetic considerations; (2) power distribution, involving electromagnetic, structural, and material aspects; (3) heat dissipation (thermal management), involving structural and material considerations; (4) and protection (mechanical, chemical, electromagnetic) of components and interconnections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Eds., “Microelectronics Packaging Handbook,” 2nd Ed., Chapman & Hall, London, 1997.

    Google Scholar 

  2. L. M. Levinson, C. W. Eichelberger, R. J. Wojnarowski, and R. O. Carlson, “High-Density Interconnect Using Laser Lithography,”Proceedings International Symposium on Microelectronics, Seattle, Washington, October 17–19, pp. 301–306, 1988.

    Google Scholar 

  3. G. Lo and S. K. Sitaraman, “G-Helix: Lithography-Based, Wafer-Level Compliant Chip-to-Substrate Interconnect,”Proceedings 54th Electronic Components and Technology Conference, Las Vegas, Nevada, June 1–4, pp. 320–325, 2004.

    Google Scholar 

  4. D. B. Tuckerman, D. J. Ashkenas, E. Schmidt, and C. Smith, “Die Attach and Interconnection Technology for Hybrid WSI,”Laser Pantography States Report UCAR, Lawrence Livermore Laboratories, pp. 10195, 1986.

    Google Scholar 

  5. D. J. Ehrlich and J. Y. Tsao, “Laser Direct Writing for VLSI,”VLSI Electronics: Microstructure Science, 7, 129–164, 1983.

    Google Scholar 

  6. D. Liu, C. Zhang, J. Graves, and T. Kegresse, “Laser Direct-Write (LDW) Technology and Its Applications in Low Temperature Co-Fired Ceramic (LTTC) Electronics,”Proc. 2003 International Symposium on Microelectronics, Nov. 18–20, pp. 298–303, 2003.

    Google Scholar 

  7. V. S. Rao, A. A. O. Tay, V. Kripesh, C. T. Lim, and S. W. Yoon, “Bed of Nails-100 Microns Pitch Wafer Level Interconnections Process,”Proceedings. of the Electronic Packaging Technology Conference, pp. 444–449, 2004.

    Google Scholar 

  8. R. R. Tummala, P. M. Raj, A. Aggarwal, G. Mehrotra, S. W. Koh, and S. Bansal, “Copper interconnections for High Performance, Fine Pitch Flipchip and Ultra-Miniaturized Module Applications,”Proceedings of the Electronic Components and Technology Conference, May 28–30, pp. 102–111, 2006.

    Google Scholar 

  9. T. Wang, F. Tung, L. Foo, and V. Dutta, “Studies on a Novel Flip-Chip Interconnect Structure-Pillar Bump,”Proceedings of the Electronic Components and Technology Conference, pp. 945–949, 2001.

    Google Scholar 

  10. D. Lu and C. P. Wong, Eds., “Materials for Advanced Packaging,” Springer, Berlin, 2008.

    Google Scholar 

  11. I. Soga, D. Kondo, Y. Yamaguchi, T. Iwai, M. Mizukoshi, Y. Awano, K. Yube, and T. Fujii, “Carbon Nanotube Bumps for LSI Interconnect,”Proceedings of the 58th Electronic Components and Technology Conference, pp. 1390–1394, 2008.

    Google Scholar 

  12. D. Lu and C. P. Wong, “Electrical Conductive Adhesives”, in Materials for Advanced Packaging, Chapter 11, D. Lu and C. P. Wong, Eds., Springer, Berlin, 2008.

    Google Scholar 

  13. A. Yeoh, M. Chang, C. Pelto, T.-L. Huang, S. Balakrishnan, G. Leatherman, S. Agraharam, G. Wang, Z. Wang, D. Chiang, P. Stover, and P. Brandenburger, “Copper Die Bumps (First Level Interconnect) and Low-K Dielectrics in 65 nm High Volume Manufacturing,”Proceedings of 56th Electronic Components and Technology Conference, 30 May–2 June, pp. 1611–1615, 2006.

    Google Scholar 

  14. Z. Zhong, “Flip Chip Assemblies Using Gold Bumps and Adhesives,”Microelectronics International, 18(3), 15–19, 2001.

    Article  Google Scholar 

  15. D. Wojciechowski, J. Vanfletern, E. Reese, and H. Hagerdorn, “Electroconductive Adhesives for High Density Package and Flip-Chip Interconnections,”Microelectronics and Reliability, 40, 1215–1226, 2000.

    Article  Google Scholar 

  16. F. W. Kulesza and R. H. Estes, “Better Bump?,”Advanced Packaging, 6, 26–29, 1997.

    Google Scholar 

  17. C. Howard, S. Nair, S. Ang, and L. Schaper, “Investigation of Conductive Polymer-Flip Chip Attachment in Multichip Module Applications,”Proceedings Electronic Components Technology Conference, pp. 1244–1249, 1995.

    Google Scholar 

  18. L. Anon, “Polymer Flip-Chip PFC: A Solderless Bump Process,”Microwave Journal, 38, 128–130, 1995.

    Google Scholar 

  19. R. R. Tummala and V. Madisetti, “System on Chip or System on Package,”IEEE Design and Test of Computer, 4, 48, 1999.

    Article  Google Scholar 

  20. C. P. Wong, Polymers for Electronic and Photonic Applications, Academic Press, New York, 1993.

    Google Scholar 

  21. K. J. Puttlitz, K. A. Stalter, and P. T. Vianco, “Handbook of Lead-Free Solder Technology for Microelectronic Assemblies,” Marcel Dekker, New York, USA, pp. 167–210, 2004.

    Google Scholar 

  22. IPC Global Solder Statistical Program Report for 2nd Quarter 2007, August 2007.

    Google Scholar 

  23. J. Cannis, “Green IC packaging,”Advanced Packaging, 8, 33–38, 2001.

    Google Scholar 

  24. L. F. A. T. White Paper: IPC-SPVC-WP-006 Round Robin Testing and Analysis, Silver, Copper, 12, “International Printed Circuit Association Solder Products Value Council,”White Paper: IPC-SPVC-WP-006 Round Robin Testing and Analysis, Lead Free Alloys: Tin, Silver, Copper, 12, August 2003.

    Google Scholar 

  25. M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics,”Materials Science and Engineering Report, 27(5–6), 95–141, 2000.

    Article  Google Scholar 

  26. C. M. L. Wu, M. L. Huang, J. K. L. Lai, and Y. C. Chan, “Developing a Lead-Free Solder Alloy Sn-Bi-Ag-Cu by Mechanical Alloying,”Journal of Electronic Materials, 29(8), pp. 1015–1020, 2000.

    Article  Google Scholar 

  27. K. Suganuma, “Advances in Lead-Free Electronics Soldering,”Current Opinion in Solid State and Materials Science, 5, 55–64, 2001.

    Article  Google Scholar 

  28. B. Irving, “How $1-billion per Year can be Saved in the Soldering of Electronic Compounds,”Welding Journal, 10, 54–56, 1991.

    Google Scholar 

  29. J. L. Marshall and J. Calderon, “Hard-Particle Reinforced Composite Solders Part 1: Microcharacterisation,”Soldering and Surface Mount Technology, 9(2), 22–28, 1997.

    Article  Google Scholar 

  30. R. J. Geckle, “Metallurgical Changes in Tin-Lead Platings due to Heat Aging,”IEEE Transactions on Components, Hybrids and Manufacturing Technology, 14(4), 691–697, 1991.

    Article  Google Scholar 

  31. H. S. Betrabet, S. M. McGee, and J. K. McKinlay, “Processing Dispersion-Strengthened Sn-Pb Solders to Achieve Microstructural Refinement and Stability,” Scripta Metallurgica et Materialia, 25(10), 2323–2328, 1991.

    Article  Google Scholar 

  32. D. L. D. Chung, “Carbon Fiber Reinforced Tin-Lead Alloy as a Low Thermal Expansion Solder Perform,”US Patent 5,089,356, 1992.

    Google Scholar 

  33. S. Jin and M. McCormack, “Dispersed Additions to a Pb-Free Solder for Suppression of Microstructural Coarsening,”Journal of Electronic Materials, 23(8), 735–739, 1994.

    Article  Google Scholar 

  34. C. M. Miller, I. E. Anderson, and J. F. Smith, “A Viable Tin-Lead Solder Substitute: Sn-Ag-Cu,”Journal of Electronic Materials, 23(7), 595–601, 1994.

    Article  Google Scholar 

  35. J. H. Lee, D. J. Park, J. N. Heo, Y. H. Lee, D. H. Shin, and Y. S. Kim, “Reflow Characteristics of Sn-Ag Matrix in-situ Composite Solders,”Scripta Materialia, 42(8), 827–831, 2000.

    Article  Google Scholar 

  36. S. Y. Hwang, J. W. Lee, and Z. H. Lee, “Microstructure of a Lead-Free Composite Solder Produced by an in-situ Process,”Journal of Electronic Materials, 31(11), 1304–1308, 2002.

    Article  MathSciNet  Google Scholar 

  37. K. N. Subramanian, T. R. Bieler, and J. P. Lucas, “Microstructural Engineering of Solders,”Journal of Electronic Materials, 28(11), 1176–1183, 1999.

    Article  Google Scholar 

  38. O. Fouassier, J. Chazelas, and J. F. Silvain, “Conception of a Consumable Copper Reaction zone for a NiTi/SnAgCu Composite Material,”Composites Part A, 33(10), 1391–1395, 2002.

    Article  Google Scholar 

  39. C. T. Murray, R. L. Rudman, M. B. Sabade, and A. V. Pocius, “Conductive Adhesives for Electronic Assemblies,”Materials Research Bulletin, 28, 449–454, 2003.

    Google Scholar 

  40. E. P. Wood and K. L. Nimmo, “In Search of New Lead-Free Electronic Solders,”Journal of Electronic Materials, 23(8), 709–714, 1994.

    Article  Google Scholar 

  41. Research Triangle Park, NC,”Environmental Protection Agency, National Air Quality and Emission Trend Report, EPA-450/4-91-003, 1989.

    Google Scholar 

  42. H. Kristiansen and J. Liu, “Overview of Conductive Adhesive interconnection Technologies for LCD's,”IEEE Transactions on Components Packaging and Manufacturing Technology Part A, 21, 208–214, 1998.

    Article  Google Scholar 

  43. G. Nguyen, J. Williams, F. Gibson, and T. Winster, “Electrical Reliability of Conductive Adhesives for Surface Mount Applications,”Proceedings of International Electronic Packaging Conference, pp. 479–486, 1993.

    Google Scholar 

  44. L. Li, J. E. Morris, J. Liu, Z. Lai, L. Ljungkrona, and C. Li, “Reliability and Failure Mechanism of Isotropically Conductive Adhesives,”Proceedings of the 45th IEEE Electronic Components and Technology Conference, May 21–24, pp. 114–120, 1995.

    Google Scholar 

  45. M. A. Gaynes, R. H. Lewis, R. F. Saraf, and J. M. Roldan, “Evaluation of Contact Resistance for Isotropic Electrically Conductive Adhesives,”IEEE Transactions on Components Packaging and Manufacturing Technology Part B-Advanced Packaging, 18, 299–304, 1995.

    Article  Google Scholar 

  46. D. Cavasin, K.Brice-Heams, and A. Arab, “Improvements in the Reliability and Manufacturability of an Integrated RF Power Amplifier Module System-In-Package, via Implementation of Conductive Epoxy Adhesive for Selected SMT Components,”Proceedings 53rd Electronic Components and Technology Conference, pp. 1404 ˜ 1407, 2003.

    Google Scholar 

  47. Y. Li, K. S. Moon, and C. P. Wong, “Electronics without Lead,”Science, 308, 1419–1420, 2005.

    Article  Google Scholar 

  48. Y. Li and C. P. Wong, “Recent Advances of Conductive Adhesives as a Lead-free Alternative in Electronic Packaging: Materials, Processing, Reliability and Applications,”Materials Science & Engineering R-Reports, 51, 1–35, 2006.

    Article  Google Scholar 

  49. J. Lau, C. P. Wong, N. C. Lee, and S. Lee, Electronics Manufacturing: With Lead-Free, Halogen-Free, and Conductive-Adhesive Materials, McGraw Hill, New York, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, Y., Lu, D., Wong, C.P. (2010). Introduction. In: Electrical Conductive Adhesives with Nanotechnologies. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88783-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88783-8_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-88782-1

  • Online ISBN: 978-0-387-88783-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics