Skip to main content

Tumor-Derived Exosomes as Dendritic Cell Modulators

  • Chapter
  • First Online:
Book cover Dendritic Cells in Cancer

Abstract

Cancer cells constitutively release endosome-derived microvesicles, also called ‘exosomes’, carrying a broad array of molecular determinants involved in the remodeling of the peritumoral microenvironment. This recently defined alternative mechanism of intercellular communication is exploited by tumor cells to favor their own growth and survival through the delivery of detrimental signals to the host’s innate and adaptive immune system. Initially described for their ability to transfer tumor antigens to dendritic cells in a protected and highly immunogenic membrane-embedded form, tumor-derived exosomes have been more recently hinted to exert immunosuppressive effects on the development of antitumor immune responses at different levels. In particular, due to the transport of FasL and TRAIL pro-apoptotic molecules, exosomes derived from different tumor histotypes proved to induce programmed cell death of activated antitumor-specific T cells. On the other hand, the same microvesicles seem to mine immune-mediated recognition and elimination of cancer cells since their initial stages, regarding antigen uptake and presentation by dendritic cells. As reported herein, cancer patients display several phenotypic and functional defects in this cell subset, together with a more generalized dysfunction of the myeloid cell compartment, due to the tumor-driven expansion and activation of the so-called ‘myeloid suppressor cells’. A possible involvement of tumor-derived exosomes in the disruption of the homeostasis of the antigen-presenting cell compartment in cancer patients has been recently suggested by a series of experimental evidences, as it will be mainly discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andre, F., Schartz, N. E., Movassagh, M., Flament, C., Pautier, P., Morice, P., Pomel, C., Lhomme, C., Escudier, B., Le Chevalier, T., Tursz, T., Amigorena, S., Raposo, G., Angevin, E. and Zitvogel, L. 2002. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305.

    Article  PubMed  CAS  Google Scholar 

  • Andreola, G., Rivoltini, L., Castelli, C., Huber, V., Perego, P., Deho, P., Squarcina, P., Accornero, P., Lozupone, F., Lugini, L., Stringaro, A., Molinari, A., Arancia, G., Gentile, M., Parmiani, G. and Fais, S. 2002. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 195:1303–1316.

    Article  PubMed  CAS  Google Scholar 

  • Calzolari, A., Raggi, C., Deaglio, S., Sposi, N. M., Stafsnes, M., Fecchi, K., Parolini, I., Malavasi, F., Peschle, C., Sargiacomo, M. and Testa, U. 2006. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J Cell Sci 119:4486–4498.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, A., Mitchell, J. P., Court, J., Mason, M. D. and Tabi, Z. 2007. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res 67:7458–7466.

    Article  PubMed  CAS  Google Scholar 

  • Escudier, B., Dorval, T., Chaput, N., Andre, F., Caby, M. P., Novault, S., Flament, C., Leboulaire, C., Borg, C., Amigorena, S., Boccaccio, C., Bonnerot, C., Dhellin, O., Movassagh, M., Piperno, S., Robert, C., Serra, V., Valente, N., Le Pecq, J. B., Spatz, A., Lantz, O., Tursz, T., Angevin, E. and Zitvogel, L. 2005. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 3:10.

    Article  PubMed  Google Scholar 

  • Fevrier, B. and Raposo, G. 2004. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421.

    Article  PubMed  CAS  Google Scholar 

  • Filipazzi, P., Valenti, R., Huber, V., Pilla, L., Canese, P., Iero, M., Castelli, C., Mariani, L., Parmiani, G. and Rivoltini, L. 2007. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25:2546–2553.

    Article  PubMed  CAS  Google Scholar 

  • Gesierich, S., Berezovskiy, I., Ryschich, E. and Zoller, M. 2006. Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res 66:7083–7094.

    Article  PubMed  CAS  Google Scholar 

  • Ghiringhelli, F., Puig, P. E., Roux, S., Parcellier, A., Schmitt, E., Solary, E., Kroemer, G., Martin, F., Chauffert, B. and Zitvogel, L. 2005. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202:919–929.

    Article  PubMed  CAS  Google Scholar 

  • Hegmans, J. P., Bard, M. P., Hemmes, A., Luider, T. M., Kleijmeer, M. J., Prins, J. B., Zitvogel, L., Burgers, S. A., Hoogsteden, H. C. and Lambrecht, B. N. 2004. Proteomic analysis of exosomes secreted by human mesothelioma cells. Am J Pathol 164:1807–1815.

    Article  PubMed  CAS  Google Scholar 

  • Huber, V., Fais, S., Iero, M., Lugini, L., Canese, P., Squarcina, P., Zaccheddu, A., Colone, M., Arancia, G., Gentile, M., Seregni, E., Valenti, R., Ballabio, G., Belli, F., Leo, E., Parmiani, G. and Rivoltini, L. 2005. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128:1796–1804.

    Article  PubMed  CAS  Google Scholar 

  • Iero, M., Valenti, R., Huber, V., Filipazzi, P., Parmiani, G., Fais, S. and Rivoltini, L. 2008. Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15:80–88.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. W., Wieckowski, E., Taylor, D. D., Reichert, T. E., Watkins, S. and Whiteside, T. L. 2005. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 11:1010–1020.

    PubMed  CAS  Google Scholar 

  • Mears, R., Craven, R. A., Hanrahan, S., Totty, N., Upton, C., Young, S. L., Patel, P., Selby, P. J. and Banks, R. E. 2004. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 4:4019–4031.

    Article  PubMed  CAS  Google Scholar 

  • Radons, J. and Multhoff, G. 2005. Immunostimulatory functions of membrane-bound and exported heat shock protein 70. Exerc Immunol Rev 11:17–33.

    PubMed  Google Scholar 

  • Rescigno, M., Piguet, V., Valzasina, B., Lens, S., Zubler, R., French, L., Kindler, V., Tschopp, J. and Ricciardi-Castagnoli, P. 2000. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J Exp Med 192:1661–1668.

    Article  PubMed  CAS  Google Scholar 

  • Soderberg, A., Barral, A. M., Soderstrom, M., Sander, B. and Rosen, A. 2007. Redox-signaling transmitted in trans to neighboring cells by melanoma-derived TNF-containing exosomes. Free Radic Biol Med 43:90–99.

    Article  PubMed  Google Scholar 

  • Taylor, D. D. and Gercel-Taylor, C. 2005. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer 92:305–311.

    PubMed  CAS  Google Scholar 

  • Thery, C., Zitvogel, L. and Amigorena, S. 2002. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579.

    PubMed  CAS  Google Scholar 

  • Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J. and Lotvall, J. O. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659.

    Article  PubMed  CAS  Google Scholar 

  • Valenti, R., Huber, V., Filipazzi, P., Pilla, L., Sovena, G., Villa, A., Corbelli, A., Fais, S., Parmiani, G. and Rivoltini, L. 2006. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298.

    Article  PubMed  CAS  Google Scholar 

  • Valenti, R., Huber, V., Iero, M., Filipazzi, P., Parmiani, G. and Rivoltini, L. 2007. Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67:2912–2915.

    Article  PubMed  CAS  Google Scholar 

  • Wieckowski, E. and Whiteside, T. L. 2006. Human tumor-derived vs dendritic cell-derived exosomes have distinct biologic roles and molecular profiles. Immunol Res 36:247–254.

    Article  PubMed  CAS  Google Scholar 

  • Wolfers, J., Lozier, A., Raposo, G., Regnault, A., Thery, C., Masurier, C., Flament, C., Pouzieux, S., Faure, F., Tursz, T., Angevin, E., Amigorena, S. and Zitvogel, L. 2001. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303.

    Article  PubMed  CAS  Google Scholar 

  • Yu, S., Liu, C., Su, K., Wang, J., Liu, Y., Zhang, L., Li, C., Cong, Y., Kimberly, R., Grizzle, W. E., Falkson, C. and Zhang, H. G. 2007. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol 178:6867–6875.

    PubMed  CAS  Google Scholar 

  • Zhang, H. G., Kim, H., Liu, C., Yu, S., Wang, J., Grizzle, W. E., Kimberly, R. P. and Barnes, S. 2007. Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity. Biochim Biophys Acta 1773:1116–1123.

    Article  Google Scholar 

  • Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi- Castagnoli, P., Raposo, G. and Amigorena, S. 1998. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licia Rivoltini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Valenti, R., Huber, V., Filipazzi, P., Iero, M., Parmiani, G., Rivoltini, L. (2009). Tumor-Derived Exosomes as Dendritic Cell Modulators. In: Salter, R., Shurin, M. (eds) Dendritic Cells in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88611-4_8

Download citation

Publish with us

Policies and ethics