Skip to main content

Atmospheric Ions and Aerosol Formation

  • Chapter
Planetary Atmospheric Electricity

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 30))

Abstract

This paper discusses atmospheric ions and their role in aerosol formation. Emphasis is placed upon the upper troposphere where very low temperatures tend to facilitate new particle formation by nucleation. New measurements addressed include: Laboratory measurements of cluster ions, aircraft measurements of ambient atmospheric ions, atmospheric measurements of the powerful nucleating gas H2SO4 and its gaseous precursor SO2. The paper also discusses model simulations of aerosol formation and growth. It is concluded that in the upper troposphere new aerosol formation via ions is a frequent process with relatively large rates. However new particle formation by homogeneous nucleation which does not involve ions also seems to be efficient. The bottleneck in the formation of upper troposphere aerosol particles with sizes sufficiently large to be climate relevant is mostly not nucleation but sufficient growth of new and still very small particles. Our recent upper troposphere SO2 measurements suggest that particle growth by gaseous sulphuric acid condensation can be efficient in certain circumstances. If so, cosmic ray mediated formation of CCN sized particles should at least occasionally be operative in the upper troposphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • F. Arnold, Multi-ion complexes in the stratosphere – Implications for trace gases and aerosol. Nature 284, 610–611 (1980a). doi:10.1038/284610a0

    Article  ADS  Google Scholar 

  • F. Arnold, Ion-induced nucleation of atmospheric water vapour at the mesopause. Planet. Space Sci. 28, 1003 (1980b). doi:10.1016/0032-0633(80)90061-6

    Article  ADS  Google Scholar 

  • F. Arnold, Solvated electrons in the upper atmosphere. Nature 294, 732 (1981a). doi:10.1038/294732a0

    Article  ADS  Google Scholar 

  • F. Arnold, Ion nucleation – A potential source for stratospheric aerosols. Nature 299, 134 (1981b). doi:10.1038/299134a0

    Article  ADS  Google Scholar 

  • F. Arnold, R. Fabian, First measurements of gas phase sulfuric acid in the stratosphere. Nature 282, 55 (1980). doi:10.1038/283055a0

    Article  ADS  Google Scholar 

  • F. Arnold, S. Wilhelm, L. Pirjola, Cosmic ray induced formation of aerosol particles and cloud condensation nuclei: First detection of large negative and positive cluster ions in the upper troposphere (2008, in preparation)

    Google Scholar 

  • D.R. Bates, Ion–ion recombination in an ambient gas. Adv. In Atomic and Molecular Physics, vol. 20 (1985)

    Google Scholar 

  • K.S. Carslaw, R.G. Harrison, J. Kirkby, Cosmic rays, clouds and climate. Science 298, 1732–1737 (2002). doi:10.1126/science.1076964

    Article  ADS  Google Scholar 

  • Chen, Penner, Uncertainty analysis of the first indirect aerosol effect. Atmos. Chem. Phys. 5, 2935–2948 (2005)

    Article  ADS  Google Scholar 

  • J. Curtius, K.D. Froyd, E.R. Lovejoy, Cluster ion thermal decomposition (I): Experimental kinetics study and ab initio calculations for HSO −4 (H2SO4)x(HNO3)y. J. Phys. Chem. A 105, 10867–10873 (2001). doi:10.1021/jp0124950

    Article  Google Scholar 

  • S. Eichkorn, Development of an aircraft-based ion mass spectrometer with a large mass range: Measurements in the laboratory, aircraft exhaust plumes and the upper troposphere. PhD thesis. University of Heidelberg (2001)

    Google Scholar 

  • S. Eichkorn, S. Wilhelm, H. Aufmhoff, K.H. Wohlfrom, F. Arnold, Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere. Geophys. Res. Lett. 29 (2002). doi:10.1029/2002GL015044

  • V. Fiedler, M. Dal Maso, M. Boy, H. Aufmhoff, J. Hoffmann, T. Schuck et al., The contribution of suphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe. Atmos. Chem. Phys. Discuss. 5, 1–33 (2005)

    Article  Google Scholar 

  • K.D. Froyd, E.R. Lovejoy, Experimental thermodynamics of cluster ions composed of H2SO4 and H2O. 2. Negative ion measurements and ab initio structures. J. Phys. Chem. A 107, 9812–9824 (2003). doi:10.1021/jp0278059

    Article  Google Scholar 

  • R.G. Harrison, K.S. Carslaw, Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 41, 1012 (2003). doi:10.1029/2002RG000114

    Article  ADS  Google Scholar 

  • R.G. Harrison, D.B. Stephenson, Empirical evidence for a nonlinear effect of cosmic rays on clouds, Proc. R. Soc. A (2006)

    Google Scholar 

  • H. Heitmann, F. Arnold, Composition measurements of tropospheric ions. Nature 306, 747 (1983). doi:10.1038/306747a0

    Article  ADS  Google Scholar 

  • J. Kazil, E.R. Lovejoy, Tropospheric ionization and aerosol production: A model study. J. Geophys. Res. 109 (2004). doi:10.1029/2004JD004852

  • C.E. Kolb, J.T. Jayne, D.R. Wornshop, M.J. Molina, R.F. Meads, A.A. Viggiano, Gas phase reaction of sulfur trioxide with water vapour. J. Am. Chem. Soc. 116, 10,314–10,315 (1994). doi:10.1021/ja00101a067

    Google Scholar 

  • M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen et al., Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143–176 (2004). doi:10.1016/j.jaerosci.2003.10.003

    Article  Google Scholar 

  • A. Laaksonen, V. Talanquer, D.W. Oxtoby, Nucleation: measurements, theory, and atmospheric applications. Annu. Rev. Phys. Chem. 46, 489–524 (1995). doi:10.1146/annurev.pc.46.100195.002421

    Article  ADS  Google Scholar 

  • Lee et al., Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science 301, 1886–1889 (2003). doi:10.1126/science.1087236 Medline

    Article  ADS  Google Scholar 

  • U. Lohmann, J. Feichter, Global indirect aerosol effects: a review. Atmos. Chem. Phys. Discuss. 5, 715–737 (2005)

    ADS  Google Scholar 

  • E.R. Lovejoy, J. Curtius, Cluster ion thermal decomposition (II): Master equation modeling in the low pressure limit and fall-off regions. Bond energies for HSO −4 (H2SO4)x(HNO3)y. J. Phys. Chem. A 105, 10,874–10,883 (2001). doi:10.1021/jp012496s

    Google Scholar 

  • E.R. Lovejoy, D.R. Hanson, G.G. Huey, Kinetics and products of gas-phase reactions of SO3 with water. J. Phys. Chem. 100, 19.911–19.916 (1996)

    Google Scholar 

  • E.R. Lovejoy, J. Curtius, K.D. Froyd, Atmospheric ion-induced nucleation of sulphuric acid and water. J. Geophys. Res. 109 (2004). doi:10.1029/2003JD004460

  • N.D. Marsh, H. Svensmark, Low cloud properties influenced by cosmic rays. Phys. Rev. Lett. 85, 5004–5007 (2000). doi:10.1103/PhysRevLett.85.5004 Medline

    Article  ADS  Google Scholar 

  • O. Möhler, F. Arnold, Gaseous sulphuric acid and sulfur dioxide measurements in the arctic troposphere and lower stratosphere: Implications for hydroxyl radical abundances. Geophys. Res. Lett. 19, 1763–1766 (1992). doi:10.1029/92GL01807

    Article  ADS  Google Scholar 

  • U. Neff et al., Strong coincidence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411, 290–293 (2001). doi:10.1038/35077048 Medline

    Article  ADS  Google Scholar 

  • E.P. Ney, Cosmic radiation and the weather. Nature 183, 451–452 (1959). doi:10.1038/183451a0

    Article  ADS  Google Scholar 

  • T. Reiner, F. Arnold, Laboratory flow reactor measurements of the reaction SO2+H2O+M→H2SO4+M: Implications for gaseous H2SO4 and aerosol formation in the plume of jet aircraft. Geophys. Res. Lett. 20, 2659–2662 (1993). doi:10.1029/93GL02996

    Article  ADS  Google Scholar 

  • T. Reiner, F. Arnold, Laboratory investigations of gaseous sulfuric acid formation via SO2+ H2O + M → H2SO4+ M: Measurements of the rate constant and products identification. J. Chem. Phys. 101, 7399–7407 (1994). doi:10.1063/1.468298

    Article  ADS  Google Scholar 

  • N.J. Shaviv, Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible climatic connection. Phys. Rev. Lett. 89, 051102 (2002). doi:10.1103/PhysRevLett.89.051102 Medline

    Article  ADS  Google Scholar 

  • N.R. Shaviv, J. Veizer, Celestial driver of phanerozoic climate? GSA. Today 13(7) (2004)

    Google Scholar 

  • A. Sorokin, F. Arnold, D. Wiedner, Flow reactor experiments and model calculations of sulfuric acid-water cluster ion formation and ion-induced nucleation. Atmos. Environ. 40, 2030–2045 (2006).

    Article  Google Scholar 

  • Speidel et al., Sulfur dioxide measurements in the lower, middle and upper troposphere: Deployment of a novel aircraft-based chemical ionization mass spectrometer with permanent in-flight calibration. Atmos. Environ. (2007)

    Google Scholar 

  • A.A. Viggiano, F. Arnold, Ion chemistry and composition of the atmosphere, in Handbook of Atmospheric Electrodynamics, vol. 1 (CRC Press, Boca Raton, 1995)

    Google Scholar 

  • D. Wiedner, Flow reactor investigations of aerosol particle formation by ion induced nucleation: The H2SO4/H2O system. Diploma thesis. University of Heidelberg, 2000

    Google Scholar 

  • S. Wilhelm, S. Eichkorn, D. Wiedner, L. Pirjola, F. Arnold, Ion-induced aerosol formation: new insights from laboratory measurements of mixed cluster ions HSO −4 (H2SO4) a (H2O) w and H+(H2SO4) a (H2O) w . Atmos. Environ. 38, 1735–1744 (2004). doi:10.1016/j.atmosenv.2003.12.025

    Article  Google Scholar 

  • WMO, in Climate Change 2001: The Scientific Basis, ed. by J.T. Houghton et al. (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  • F. Yu et al., Altitude variations of cosmic ray induced production of aerosols: Implications for global cloudiness and climate. J. Geophys. Res. 107 (2002). doi:10.1029/2001JA000248

  • F. Yu, R.P. Turco, From molecular clusters to nanoparticles: Role of ambient ionisation in tropospheric aerosol formation. J. Geophys. Res. 106, 4797–4814 (2001). doi:10.1029/2000JD900539

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, BV

About this chapter

Cite this chapter

Arnold, F. (2008). Atmospheric Ions and Aerosol Formation. In: Leblanc, F., Aplin, K.L., Yair, Y., Harrison, R.G., Lebreton, J.P., Blanc, M. (eds) Planetary Atmospheric Electricity. Space Sciences Series of ISSI, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87664-1_14

Download citation

Publish with us

Policies and ethics