Skip to main content

The Assessment of Autonomic Influences on the Heart Using Impedance Cardiography and Heart Rate Variability

  • Reference work entry
  • First Online:
Handbook of Cardiovascular Behavioral Medicine

Abstract

The autonomic nervous system (ANS) is critically important in both physiological and psychological health and well-being. However, the noninvasive assessment of the ANS is not trivial and requires special care. The advent of modern, turnkey systems for the measurement of impedance cardiography and heart rate variability (HRV) has greatly enhanced our ability to capture indices of ANS function but has also opened the field up to less than fully informed use of these measures. It is now currently possible to measure both central and peripheral cardiovascular functions in an ambulatory setting. This has expanded the opportunities as well as the challenges associated with ANS measurement. The present chapter seeks to briefly summarize major aspects of the assessment of ANS function using impedance cardiography and HRV. We start with an overview of the ANS and one of its most important aspects, the baroreflex. We then describe the use of impedance cardiography with special care taken to highlight important findings since the publication of the Society for Psychophysiological Research guidelines. We next describe the assessment of HRV and again hope to highlight important research since the publication of several seminal guideline papers. It is hoped that this chapter will provide a ready resource for researchers and others interested in the noninvasive assessment of the autonomic nervous system in health and disease.

Note: This is an updated and expanded version of a previous chapter by Thayer J. F., Hansen, A. L., & Johnsen, B. H. (2010). The non-invasive assessment of autonomic influences on the heart using impedance cardiography and heart rate variability. In A. Steptoe (Ed.), Handbook of behavioral medicine: methods and applications. Springer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahern GL, Sollers JJ, Lane RD, Labiner DM, Herring AM, Weinand ME, Hutzler R, Thayer JF (2001) Heart rate and heart rate variability changes in the intracarotid sodium amobarbital test. Epilepsia 42(7):912–921

    Article  PubMed  Google Scholar 

  2. Allen JJB, Chambers AS, Towers DN (2007) The many metrics of cardiac chronotropy: a pragmatic primer and a brief comparison of metrics. Biol Psychol 74(2):243–262

    Article  PubMed  Google Scholar 

  3. Amerena J, Julius S (1995) Role of the nervous system in human hypertension. In: Hypertension: mechanisms and therapy. Current Medicine, Philadelphia

    Google Scholar 

  4. Appelhans BM, Luecken LJ (2006) Heart rate variability as an index of regulated emotional responding. Rev Gen Psychol 10(3):229

    Article  Google Scholar 

  5. Arnett DK, Devereux RB, Kitzman D, Oberman A, Hopkins P, Atwood L, Dewan A, Rao D (2001) Linkage of left ventricular contractility to chromosome 11 in humans. The HyperGEN Study. Hypertension 38(4):767–772

    Article  PubMed  Google Scholar 

  6. Arnsten AFT, Goldman-Rakic PS (1998) Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry 55(4):362

    Article  PubMed  Google Scholar 

  7. Benarroch E (1993) The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc 68:988–1001

    Article  PubMed  Google Scholar 

  8. Benarroch EE (1997) Central autonomic network. Futura Publishing Company

    Google Scholar 

  9. Benarroch EE (2008) The arterial baroreflex. Neurology 71(21):1733

    Article  PubMed  Google Scholar 

  10. Berne RM, Levy MN (2001) Cardiovascular physiology. Mosby Press, London

    Google Scholar 

  11. Berntson GG (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34(6):623–648

    Article  PubMed  Google Scholar 

  12. Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN (1992) Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 85(1):164

    Article  PubMed  Google Scholar 

  13. Bogert LWJ, Van Lieshout JJ (2005) Non invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp Physiol 90(4):437–446

    Article  PubMed  Google Scholar 

  14. Boomsma D, Van Baal G, Orlebeke J (1990) Genetic influences on respiratory sinus arrhythmia across different task conditions. Acta Genet Med Gemellol 39:181–191

    Article  PubMed  Google Scholar 

  15. Brook RD, Julius S (2000) Autonomic imbalance, hypertension, and cardiovascular risk. Am J Hypertens 13:112S–122S

    Article  PubMed  Google Scholar 

  16. Bruehl S, Chung OY (2004) Interactions between the cardiovascular and pain regulatory systems: an updated review of mechanisms and possible alterations in chronic pain. Neurosci Biobehav Rev 28(4):395–414

    Article  PubMed  Google Scholar 

  17. Busjahn A, Voss M (1998) Angiotensin-converting enzyme and angiotensinogen gene polymorphisms and heart rate variability in twins. Am J Cardiol 81(6):755–760

    Article  PubMed  Google Scholar 

  18. Coleman WM (1920) On the correlation of the rate of heart beat, breathing, bodily movement and sensory stimuli. J Physiol 54(4):213

    Article  PubMed  PubMed Central  Google Scholar 

  19. Coleman T, Guyton A, Cowley A Jr, Bower J, Norman R Jr, Manning R Jr (1977) Feedback mechanisms of arterial pressure control. Contrib Nephrol 8:5

    Article  PubMed  Google Scholar 

  20. Constant I, Laude D, Murat I, Elghozi JL (1999) Pulse rate variability is not a surrogate for heart rate variability. Clin Sci 97:391–397

    Article  Google Scholar 

  21. Costa M, Moody GB, Henry I, Goldberger AL (2003) PhysioNet: an NIH research resource for complex signals. J Electrocardiol 36:139–144

    Article  PubMed  Google Scholar 

  22. Cybulski G, Michalak E, Koźluk E, Piatkowska A, Niewiadomski W (2004) Stroke volume and systolic time intervals: beat-to-beat comparison between echocardiography and ambulatory impedance cardiography in supine and tilted positions. Med Biol Eng Comput 42(5):707–711

    Article  PubMed  Google Scholar 

  23. Doerr DF, Ratliff DA, Sithole J, Convertino VA (2005) Stroke volume during orthostatic challenge: comparison of two non-invasive methods. Aviat Space Environ Med 76(10):935–939

    PubMed  Google Scholar 

  24. Duschek S, Reyes del Paso GA (2007) Quantification of cardiac baroreflex function at rest and during autonomic stimulation. J Physiol Sci 57(5):259–268

    Article  PubMed  Google Scholar 

  25. Duschek S, Muckenthaler M, Werner N, Reyes del Paso GA (2009) Relationships between features of autonomic cardiovascular control and cognitive performance. Biol Psychol 81(2):110–117

    Article  PubMed  Google Scholar 

  26. Eckberg DL (1997) Sympathovagal balance: a critical appraisal. Circulation 96(9):3224

    Article  PubMed  Google Scholar 

  27. Fagard RH, Pardaens K, Staessen JA, Thijs L (1996) Prognostic value of invasive hemodynamic measurements at rest and during exercise in hypertensive men. Hypertension 28(1):31–36

    Article  PubMed  Google Scholar 

  28. Force T (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93(5):1043–1065

    Article  Google Scholar 

  29. Friedman BH, Thayer JF (1998) Anxiety and autonomic flexibility: a cardiovascular approach. Biol Psychol 47(3):243–263

    Article  PubMed  Google Scholar 

  30. Friedman BH, Thayer JF (1998) Autonomic balance revisited: panic anxiety and heart rate variability. J Psychosom Res 44(1):133–151

    Article  PubMed  Google Scholar 

  31. Friedman BH, Allen MT, Christie IC, Santucci AK (2002) Validity concerns of common heart-rate variability indices. IEEE Eng Med Biol Mag 21(4):35–40

    Article  PubMed  Google Scholar 

  32. Frijda NH (1988) The laws of emotion. Am Psychol 43(5):349

    Article  PubMed  Google Scholar 

  33. Giardino ND, Lehrer PM, Edelberg R (2002) Comparison of finger plethysmograph to ECG in the measurement of heart rate variability. Psychophysiology 39(2):246–253

    Article  PubMed  Google Scholar 

  34. Gregg ME, Matyas TA, James JE (2002) A new model of individual differences in hemodynamic profile and blood pressure reactivity. Psychophysiology 39(1):64–72

    Article  PubMed  Google Scholar 

  35. Hansen AL, Johnsen BH, Eid J, Sollers JJ, Thayer JF (2004) Hjerteratevariabilitet: En lovende tilnaerming til studiet av psykologiske prosesser, vol 41

    Google Scholar 

  36. Hesse C, Charkoudian N, Liu Z, Joyner MJ, Eisenach JH (2007) Baroreflex sensitivity inversely correlates with ambulatory blood pressure in healthy normotensive humans. Hypertension 50(1):41

    Article  PubMed  Google Scholar 

  37. Hill L, Siebenbrock A, Sollers J, Thayer J (2009) All are measures created equal? Heart rate variability and respiration. Biomed Sci Instrum 45:71–76

    PubMed  Google Scholar 

  38. Hon EH (1958) The electronic evaluation of the fetal heart rate: preliminary report. Obstet Gynecol Surv 13(5):654

    Article  Google Scholar 

  39. Houtveen JH, Rietveld S, Geus EJC (2002) Contribution of tonic vagal modulation of heart rate, central respiratory drive, respiratory depth, and respiratory frequency to respiratory sinus arrhythmia during mental stress and physical exercise. Psychophysiology 39(4):427–436

    Article  PubMed  Google Scholar 

  40. Institute of Medicine (US) Committee on Metabolic Monitoring for Military Field Applications (2004) Monitoring metabolic status: predicting decrements in physiological and cognitive performance. National Academies Press

    Google Scholar 

  41. Jensen L, Yakimets J, Teo KK (1995) A review of impedance cardiography. Heart Lung 24(3):183–193

    Article  PubMed  Google Scholar 

  42. Jose AD, Collison D (1970) The normal range and determinants of the intrinsic heart rate in man. Cardiovasc Res 4(2):160–167

    Article  PubMed  Google Scholar 

  43. Kay SM, Marple SL Jr (1981) Spectrum analysis – a modern perspective. Proc IEEE 69(11):1380–1419

    Article  Google Scholar 

  44. Kitney R (1980) An analysis of the thermoregulatory influences on heart-rate variability. In: The study of heart rate variability. Clarendon Press, pp 81–106

    Google Scholar 

  45. Kupper N, Willemsen G, Boomsma DI, de Geus EJC (2006) Heritability of indices for cardiac contractility in ambulatory recordings. J Cardiovasc Electrophysiol 17(8):877–883

    Article  PubMed  Google Scholar 

  46. La Rovere M, Bigger J Jr, Marcus F, Mortara A, Schwartz P (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 351(9101):478–484

    Article  PubMed  Google Scholar 

  47. Levy M (1997) Neural control of cardiac function. Baillieres Clin Neurol 6(2):227

    PubMed  Google Scholar 

  48. Levy MN, Martin PJ (1996) Autonomic control of cardiac conduction and automaticity. In: Nervous control of the heart. Harwood Academic Publishers, Amsterdam, pp 201–226

    Google Scholar 

  49. Levy M, Zieske H (1969) Autonomic control of cardiac pacemaker activity and atrioventricular transmission. J Appl Physiol 27(4):465

    Article  PubMed  Google Scholar 

  50. Lipsitz LA, Goldberger AL (1992) Loss of “complexity” and aging. JAMA 267(13):1806

    Article  PubMed  Google Scholar 

  51. Lohmeier TE (2001) The sympathetic nervous system and long-term blood pressure regulation. Am J Hypertens 14(6):S147–S154

    Article  Google Scholar 

  52. Lohmeier TE, Irwin ED, Rossing MA, Serdar DJ, Kieval RS (2004) Prolonged activation of the baroreflex produces sustained hypotension. Hypertension 43(2):306

    Article  PubMed  Google Scholar 

  53. Mager D, Merritt M, Kasturi J, Witkin L, Urdiqui-Macdonald M, Sollers J III, Evans M, Zonderman A, Abernethy D, Thayer J (2004) Kullback-Leibler clustering of continuous wavelet transform measures of heart rate variability. Biomed Sci Instrum 40:337

    PubMed  Google Scholar 

  54. Malik M, Camm AJ (1993) Components of heart rate variability – what they really mean and what we really measure. Am J Cardiol 72(11):821

    Article  PubMed  Google Scholar 

  55. Malliani A, Pagani M, Lombardi F (1994) Methods for assessment of sympatho-vagal balance: power spectral analysis. In: Vagal control of the heart: Experimental basis and clinical implications. Futura, pp 433–454

    Google Scholar 

  56. Malmivuo J, Plonsey R (1995) Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press

    Book  Google Scholar 

  57. McGrath JJ, O’Brien WH, Hassinger HJ, Shah P (2005) Comparability of spot versus band electrodes for impedance cardiography. J Psychophysiol 19(3):195

    Article  PubMed  PubMed Central  Google Scholar 

  58. McKinley PS, Shapiro PA, Bagiella E, Myers MM, De Meersman RE, Grant I, Sloan RP (2003) Deriving heart period variability from blood pressure waveforms. J Appl Physiol 95(4):1431

    Article  PubMed  Google Scholar 

  59. Mensah GA, Pappas TW, Koren MJ, Ulin RJ, Laragh JH, Devereux RB (1993) Comparison of classification of the severity of hypertension by blood pressure level and by World Health Organization criteria in the prediction of concurrent cardiac abnormalities and subsequent complications in essential hypertension. J Hypertens 11(12):1429

    Article  PubMed  Google Scholar 

  60. Metin A (1997) Fast algorithms for wavelet transform computation. In: Time frequency and wavelets in biomedical signal processing. IEEE Press, pp 211–222

    Google Scholar 

  61. Miller SB, Ditto B (1988) Cardiovascular responses to an extended aversive video game task. Psychophysiology 25(2):200–206

    Article  PubMed  Google Scholar 

  62. Moak JP, Goldstein DS, Eldadah BA, Saleem A, Holmes C, Pechnik S, Sharabi Y (2007) Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm 4(12):1523–1529

    Article  PubMed  PubMed Central  Google Scholar 

  63. Neumann SA, Waldstein SR, Sellers JJ III, Thayer JF, Sorkin JD (2004) Hostility and distraction have differential influences on cardiovascular recovery from anger recall in women. Health Psychol 23(6):631

    Article  PubMed  Google Scholar 

  64. Neumann SA, Lawrence EC, Jennings JR, Ferrell RE, Manuck SB (2005) Heart rate variability is associated with polymorphic variation in the choline transporter gene. Psychosom Med 67(2):168

    Article  PubMed  Google Scholar 

  65. Niskanen JP, Tarvainen MP, Ranta-aho PO, Karjalainen PA (2004) Software for advanced HRV analysis. Comput Methods Prog Biomed 76:73–81

    Article  Google Scholar 

  66. Ottaviani C, Shapiro D, Goldstein IB, James JE, Weiss R (2006) Hemodynamic profile, compensation deficit, and ambulatory blood pressure. Psychophysiology 43(1):46–56

    Article  PubMed  Google Scholar 

  67. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59(2):178–193

    Article  PubMed  Google Scholar 

  68. Parati G, Di Rienzo M, Mancia G (2000) How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens 18(1):7

    Article  PubMed  Google Scholar 

  69. Penaz J (1978) Mayer waves: history and methodology. Automedica 2:135–141

    Google Scholar 

  70. Peng CK, Buldyrev SV, Hausdorff JM, Havlin S, Mietus JE, Simons M, Stanley HE, Goldberger AL (1994) Non-equilibrium dynamics as an indispensable characteristic of a healthy biological system. Integr Psychol Behav Sci 29(3):283–293

    Article  Google Scholar 

  71. Penttilä J, Helminen A, Jartti T, Kuusela T, Huikuri HV, Tulppo MP, Coffeng R, Scheinin H (2001) Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns. Clin Physiol 21(3):365–376

    Article  PubMed  Google Scholar 

  72. Pincus SM (2001) Assessing serial irregularity and its implications for health. Ann N Y Acad Sci 954(1):245–267

    Article  PubMed  Google Scholar 

  73. Pincus SM, Gladstone IM, Ehrenkranz RA (1991) A regularity statistic for medical data analysis. J Clin Monit Comput 7(4):335–345

    Article  Google Scholar 

  74. Pomeranz B, Macaulay R, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol Heart Circ Physiol 248(1):H151

    Article  Google Scholar 

  75. Porges SW (1992) Autonomic regulation and attention. In: Attention and information processing in infants and adults: perspectives from human and animal research. Lawrence Erlbaum Associates, pp 201–223

    Google Scholar 

  76. Porges SW (1995) Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology 32(4):301–318

    Article  PubMed  Google Scholar 

  77. Porges SW, Doussard Roosevelt JA, Portales AL, Greenspan SI (1996) Infant regulation of the vagal “brake” predicts child behavior problems: a psychobiological model of social behavior. Dev Psychobiol 29(8):697–712

    Article  PubMed  Google Scholar 

  78. Porges SW, Doussard-Roosevelt JA, Stifter CA, McClenny BD, Riniolo TC (1999) Sleep state and vagal regulation of heart period patterns in the human newborn: an extension of the polyvagal theory. Psychophysiology 36(01):14–21

    Article  PubMed  Google Scholar 

  79. Pozzati A, Pancaldi LG, Di Pasquale G, Pinelli G, Bugiardini R (1996) Transient sympathovagal imbalance triggers “ischemic” sudden death in patients undergoing electrocardiographic Holter monitoring. J Am Coll Cardiol 27(4):847

    Article  PubMed  Google Scholar 

  80. Ring C, Burns VE, Carroll D (2002) Shifting hemodynamics of blood pressure control during prolonged mental stress. Psychophysiology 39(5):585–590

    Article  PubMed  Google Scholar 

  81. Roach D, Wilson W, Ritchie D, Sheldon R (2004) Dissection of long-range heart rate variability: controlled induction of prognostic measures by activity in the laboratory. J Am Coll Cardiol 43(12):2271–2277

    Article  PubMed  Google Scholar 

  82. Saul JP (1990) Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. Physiology 5(1):32

    Article  Google Scholar 

  83. Sayers B (1973) Analysis of heart rate variability. Ergonomics 16(1):17

    Article  PubMed  Google Scholar 

  84. Sherwood A, Dolan CA, Light KC (1990) Hemodynamics of blood pressure responses during active and passive coping. Psychophysiology 27(6):656–668

    Article  PubMed  Google Scholar 

  85. Sherwood A, Allen M, Fahrenberg J, Kelsey R, Lovallo W, Van Doornen L (1990) Methodological guidelines for impedance cardiography. Psychophysiology 27(1):1

    Article  PubMed  Google Scholar 

  86. Snieder H, Dong Y, Barbeau P, Harshfield GA, Dalageogou C, Zhu H, Carter ND, Treiber FA (2002) Beta 2-adrenergic receptor gene and resting hemodynamics in European and African American youth. Am J Hypertens 15:973–979

    Article  PubMed  Google Scholar 

  87. Snieder H, Harshfield GA, Treiber FA (2003) Heritability of blood pressure and hemodynamics in African- and European-American youth. Hypertension 41(6):1196

    Article  PubMed  Google Scholar 

  88. Snieder H, van Doornen LJP, Boomsma DI, Thayer JF (2007) Sex differences and heritability of two indices of heart rate dynamics: a twin study. Twin Res Hum Genet 10(2):364–372

    Article  PubMed  Google Scholar 

  89. Sollers JJ III, Sanford TA, Nabors-Oberg R, Anderson CA, Thayer JF (2002) Examining changes in HRV in response to varying ambient temperature. IEEE Eng Med Biol Mag 21(4):30–34

    Article  PubMed  Google Scholar 

  90. Stein PK, Kleiger RE (1999) Insights from the study of heart rate variability. Annu Rev Med 50(1):249–261

    Article  PubMed  Google Scholar 

  91. Stemmler G, Grossman P, Schmid H, Foerster F (1991) A model of cardiovascular activation components for studies using autonomic receptor antagonists. Psychophysiology 28(4):367–382

    Article  PubMed  Google Scholar 

  92. Sztajzel J (2004) Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly 134:514–522

    PubMed  Google Scholar 

  93. Tang W, Arnett DK, Devereux RB, Province MA, Atwood LD, Oberman A, Hopkins PN, Kitzman DW (2002) Sibling resemblance for left ventricular structure, contractility, and diastolic filling. Hypertension 40(3):233–238

    Article  PubMed  Google Scholar 

  94. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  95. Thayer JF (2006) On the importance of inhibition: central and peripheral manifestations of nonlinear inhibitory processes in neural systems. Dose-Response 4(1):2–21

    Article  PubMed  PubMed Central  Google Scholar 

  96. Thayer JF, Brosschot JF (2005) Psychosomatics and psychopathology: looking up and down from the brain. Psychoneuroendocrinology 30(10):1050–1058

    Article  PubMed  Google Scholar 

  97. Thayer JF, Friedman BH (1997) The heart of anxiety: a dynamical systems approach. In: The (non) expression of emotions in health and disease. Springer, pp 39–49

    Google Scholar 

  98. Thayer JF, Friedman BH (2004) A neurovisceral integration model of health disparities in aging. In: Critical perspectives on racial and ethnic differences in health in late life. National Academies Press

    Google Scholar 

  99. Thayer JF, Lane RD (2000) A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord 61(3):201–216

    Article  PubMed  Google Scholar 

  100. Thayer JF, Lane RD (2007) The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol 74(2):224–242

    Article  PubMed  Google Scholar 

  101. Thayer JF, Lane RD (2009) Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev 33(2):81–88

    Article  PubMed  Google Scholar 

  102. Thayer JF, Siegle GJ (2002) Neurovisceral integration in cardiac and emotional regulation. IEEE Eng Med Biol Mag 21(4):24–29

    Article  PubMed  Google Scholar 

  103. Thayer JF, Sternberg E (2006) Beyond heart rate variability. Ann N Y Acad Sci 1088(1):361–372

    Article  PubMed  Google Scholar 

  104. Thayer J, Uijtdehaage S (2001) Derivation of chronotropic indices of autonomic nervous system activity using impedance cardiography. Biomed Sci Instrum 37:331

    PubMed  Google Scholar 

  105. Thayer JF, Sollers JJ III, Ruiz-Padial E, Vila J (2002) Estimating respiratory frequency from autoregressive spectral analysis of heart period. IEEE Eng Med Biol Mag 21(4):41–45

    Article  PubMed  Google Scholar 

  106. Thayer JF, Merritt MM, Sollers JJ (2003) Effect of angiotensin-converting enzyme insertion/deletion polymorphism DD genotype on high-frequency heart rate variability in African Americans. Am J Cardiol 92(12):1487–1490

    Article  PubMed  Google Scholar 

  107. Thayer JF, Hansen AL, Sollers JJ III, Johnsen BH (2005) Heart rate variability as an index of prefrontal neural function in military settings. Proc SPIE 5797:71–77

    Article  Google Scholar 

  108. Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH (2009) Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med 37(2):141–153

    Article  PubMed  Google Scholar 

  109. Thayer JF, Yamamoto SS, Brosschot JF (2010) The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol 141(2):122–131

    Article  PubMed  Google Scholar 

  110. Thrasher TN (2006) Arterial baroreceptor input contributes to long-term control of blood pressure. Curr Hypertens Rep 8(3):249–254

    Article  PubMed  Google Scholar 

  111. Tzeng Y, Larsen P, Galletly D (2003) Cardioventilatory coupling in resting human subjects. Exp Physiol 88(6):775

    Article  PubMed  Google Scholar 

  112. Uijtdehaage SHJ, Thayer JF (2000) Accentuated antagonism in the control of human heart rate. Clin Auton Res 10(3):107–110

    Article  PubMed  Google Scholar 

  113. Wallin BG (2006) Regulation of sympathetic nerve traffic to skeletal muscle in resting humans. Clin Auton Res 16(4):262–269

    Article  PubMed  Google Scholar 

  114. Wang X, Thayer JF, Treiber F, Snieder H (2005) Ethnic differences and heritability of heart rate variability in African- and European American youth. Am J Cardiol 96(8):1166–1172

    Article  PubMed  Google Scholar 

  115. Wang X, Ding X, Su S, Li Z, Riese H, Thayer JF, Treiber F, Snieder H (2009) Genetic influences on heart rate variability at rest and during stress. Psychophysiology 46(3):458–465

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wesseling K, Jansen J, Settels J, Schreuder J (1993) Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol 74(5):2566

    Article  PubMed  Google Scholar 

  117. Yang T, Levy MN (1992) Sequence of excitation as a factor in sympathetic-parasympathetic interactions in the heart. Circ Res 71(4):898

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian F. Thayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thayer, J.F., Hansen, A.L., Johnsen, B.H. (2022). The Assessment of Autonomic Influences on the Heart Using Impedance Cardiography and Heart Rate Variability. In: Waldstein, S.R., Kop, W.J., Suarez, E.C., Lovallo, W.R., Katzel, L.I. (eds) Handbook of Cardiovascular Behavioral Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85960-6_38

Download citation

Publish with us

Policies and ethics