Skip to main content

Genome Wide Approaches in Natural Product Research

  • Chapter
  • First Online:
Plant-derived Natural Products

Summary

Within the last decade, the strategy for pathway discovery in plant secondary metabolism has reversed from a metabolite to protein to gene approach to a gene to pathway strategy. Different genome-wide “omics” strategies apply to gene discovery in model plants with sequenced genomes and plants of pharmaceutical or industrial interest. In this chapter, we provide a brief description as well as a few examples of the main approaches that have so far been applied to plant metabolism. Combination of such global approaches leads to the new field of ‘integrative biology’, which highlights metabolic networks connecting the different branches of primary and “secondary” metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lepiniec, L., Debeaujon, I., Routaboul, J.M., Baudry, A., Pourcel, L., Nesi, N., and Caboche, M. 2006. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57: 405-430.

    PubMed  CAS  Google Scholar 

  2. Trojanowska, M.R., Osbourn, A.E., Daniels, M.J., and Threlfall, D.R. 2001. Investigation of avenacin-deficient mutants of Avena strigosa. Phytochem 56: 121-129.

    CAS  Google Scholar 

  3. Humphreys, J.M. and Chapple, C. 2002. Rewriting the lignin roadmap. Curr Opin Plant Biol 5: 224-229.

    PubMed  CAS  Google Scholar 

  4. Nomura, T. and Bishop, G.J. 2006. Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochem Rev 5: 421-432.

    CAS  Google Scholar 

  5. Takei, K., Yamaya, T., and Sakakibara, H. 2004. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem 279: 41866-41872.

    PubMed  CAS  Google Scholar 

  6. Abdulrazzak, N., Pollet, B., Ehlting, J., Larsen, K., Asnaghi, C., Ronseau, S., Proux, C., Erhardt, M., Seltzer, V., Renou, J.P., Ullmann, P., Pauly, M., Lapierre, C., and Werck-Reichhart, D. 2006. A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol 140: 30-48.

    PubMed  CAS  Google Scholar 

  7. Aubourg, S., Lecharny, A., and Bohlmann, J. 2002. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics 267: 730-745.

    PubMed  CAS  Google Scholar 

  8. Hemm, M.R., Ruegger, M.O., and Chapple, C. 2003. The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15: 179-194.

    PubMed  CAS  Google Scholar 

  9. The Arabidopsis Genome Initiative 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:716-8

    Google Scholar 

  10. International Rice Genome Sequencing Project 2005. The map-based sequence of the rice genome. Nature 436: 793-800.

    Google Scholar 

  11. Paterson, A., Bowers, J., Kresovich, S., Hash, C., Messing, J., Peterson, D., Schmutz, J., and Rokhsar, D. Phytozome Sorghum bicolor. http://www.phytozome.net/sorghum . 2007.

  12. Tuskan, G.A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R.R., Bhalerao, R.P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., Busov, V., Campbell, M., Carlson, J., Chalot, M., Chapman, J., Chen, G.L., Cooper, D., Coutinho, P.M., Couturier, J., Covert, S., Cronk, Q., Cunningham, R., Davis, J., Degroeve, S., Dejardin, A., dePamphilis, C., Detter, J., Dirks, B., Dubchak, I., Duplessis, S., Ehlting, J., Ellis, B., Gendler, K., Goodstein, D., Gribskov, M., Grimwood, J., Groover, A., Gunter, L., Hamberger, B., Heinze, B., Helariutta, Y., Henrissat, B., Holligan, D., Holt, R., Huang, W., Islam-Faridi, N., Jones, S., Jones-Rhoades, M., Jorgensen, R., Joshi, C., Kangasjarvi, J., Karlsson, J., Kelleher, C., Kirkpatrick, R., Kirst, M., Kohler, A., Kalluri, U., Larimer, F., Leebens-Mack, J., Leple, J.C., Locascio, P., Lou, Y., Lucas, S., Martin, F., Montanini, B., Napoli, C., Nelson, D.R., Nelson, C., Nieminen, K., Nilsson, O., Pereda, V., Peter, G., Philippe, R., Pilate, G., Poliakov, A., Razumovskaya, J., Richardson, P., Rinaldi, C., Ritland, K., Rouze, P., Ryaboy, D., Schmutz, J., Schrader, J., Segerman, B., Shin, H., Siddiqui, A., Sterky, F., Terry, A., Tsai, C.J., Uberbacher, E., Unneberg, P., Vahala, J., Wall, K., Wessler, S., Yang, G., Yin, T., Douglas, C., Marra, M., Sandberg, G., Van de Peer, Y., and Rokhsar, D. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313: 1596-1604.

    PubMed  CAS  Google Scholar 

  13. The French-Italian Public Consortium for Grapevine Genome Characterization 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463-467.

    Google Scholar 

  14. Rabinowicz, P., Ravel, J., Chan, A., Melake, A., Wortman, J., Zhao, Q., Orvis, J., and Puiu, D. TIGR: Castor Bean Genome Database. http://castorbean.tigr.org . 2007.

  15. Ming, R., Hou, S., Feng, Y., Yu Qonne-Laporte, A., Saw, J.H., Senin, P., Wang, W., Ly, B.V., Lewis, K.L., Salzberg, S.L., Feng, L., Jones, M.R., Skelton, R.L., Murray, J.E., Chen, C., Qian, W., Shen, J., Du, P., Eustice, M., Tong, E., Tang, H., Lyons, E., Paull, R.E., Michael, T.P., Wall, K., Rice, D.W., Albert, H., Wang, M.L., Zhu, Y.J., Schatz, M., Nagarajan, N., Acob, R.A., Guan, P., Blas, A., Wai, C.M., Ackerman, C.M., Ren, Y., Liu, C., Wang, J., Wang, J., Na, J.K., Shakirov, E.V., Haas, B., Thimmapuram, J., Nelson, D., Wang, X., Bowers, J.E., Gschwend, A.R., Delcher, A.L., Singh, R., Suzuki, J.Y., Tripathi, S., Neupane, K., Wei, H., Irikura, B., Paidi, M., Jiang, N., Zhang, W., Presting, G., Windsor, A., Navajas-Perez, R., Torres, M.J., Feltus, F.A., Porter, B., Li, Y., Burroughs, A.M., Luo, M.C., Liu, L., Christopher, D.A., Mount, S.M., Moore, P.H., Sugimura, T., Jiang, J., Schuler, M.A., Friedman, V., Mitchell-Olds, T., Shippen, D.E., dePamphilis, C.W., Palmer, J.D., Freeling, M., Paterson, A.H., Gonsalves, D., Wang, L., and Alam, M. 2008. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452: 991-996.

    PubMed  CAS  Google Scholar 

  16. Bentley, D.R. 2006. Whole-genome re-sequencing. Curr Opin Genet Dev 16: 545-552.

    PubMed  CAS  Google Scholar 

  17. Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, D., Bork, P., Buillard, V., Cerutti, L., Copley, R., Courcelle, E., Das, U., Daugherty, L., Dibley, M., Finn, R., Fleischmann, W., Gough, J., Haft, D., Hulo, N., Hunter, S., Kahn, D., Kanapin, A., Kejariwal, A., Labarga, A., Langendijk-Genevaux, P.S., Lonsdale, D., Lopez, R., Letunic, I., Madera, M., Maslen, J., McAnulla, C., McDowall, J., Mistry, J., Mitchell, A., Nikolskaya, A.N., Orchard, S., Orengo, C., Petryszak, R., Selengut, J.D., Sigrist, C.J.A., Thomas, P.D., Valentin, F., Wilson, D., Wu, C.H., and Yeats, C. 2007. New developments in the InterPro database. Nucleic Acids Res 35: D224-D228.

    PubMed  CAS  Google Scholar 

  18. Nelson, D.R., Schuler, M.A., Paquette, S.M., Werck-Reichhart, D., and Bak, S. 2004. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135: 756-772.

    CAS  Google Scholar 

  19. Vogt, T. and Jones, P. 2000. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5: 380-386.

    PubMed  CAS  Google Scholar 

  20. Bak, S., Nielsen, H., and Halkier, B. 1998. The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates. Plant Mol Biol 38: 725-734.

    PubMed  CAS  Google Scholar 

  21. Kandel, S., Sauveplane, V., Olry, A., Diss, L., Benveniste, I., and Pinot, F. 2006. Cytochrome P450-dependent fatty acid hydroxylases in plants. Phytochem Rev 5: 359-372.

    CAS  Google Scholar 

  22. Stumpe, M. and Feussner, I. 2006. Formation of oxylipins by CYP74 enzymes. Phytochem Rev 5: 347-357.

    CAS  Google Scholar 

  23. Bishop, G., Nomura, T., Yokota, T., Montoya, T., Castle, J., Harrison, K., Kushiro, T., Kamiya, Y., Yamaguchi, S., Bancos, S., Szatmari, A.M., and Szekeres, M. 2006. Dwarfism and cytochrome P450-mediated C-6 oxidation of plant steroid hormones. Biochem Soc Trans 34: 1199-1201.

    PubMed  CAS  Google Scholar 

  24. Ohnishi, T., Szatmari, A.M., Watanabe, B., Fujita, S., Bancos, S., Koncz, C., Lafos, M., Shibata, K., Yokota, T., Sakata, K., Szekeres, M., and Mizutani, M. 2006. C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell 18: 3275-3288.

    PubMed  CAS  Google Scholar 

  25. Ehlting, J., Buttner, D., Wang, Q., Douglas, C.J., Somssich, I.E., and Kombrink, E. 1999. Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J 19: 9-20.

    PubMed  CAS  Google Scholar 

  26. Hamberger, B. and Hahlbrock, K. 2004. The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc Natl Acad Sci USA 101: 2209-2214.

    PubMed  CAS  Google Scholar 

  27. Hull, A.K., Vij, R., and Celenza, J.L. 2000. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97: 2379-2384.

    PubMed  CAS  Google Scholar 

  28. Chen, S., Glawischnig, E., Jorgensen, K., Naur, P., Jorgensen, B., Olsen, C.E., Hansen, C.H., Rasmussen, H., Pickett, J.A., and Halkier, B.A. 2003. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33: 923-937.

    PubMed  CAS  Google Scholar 

  29. Mikkelsen, M.D., Hansen, C.H., Wittstock, U., and Halkier, B.A. 2000. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275: 33712-33717.

    PubMed  CAS  Google Scholar 

  30. Wittstock, U. and Halkier, B.A. 2000. Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem 275: 14659-14666.

    CAS  Google Scholar 

  31. Saito, K., Hirai, M.Y., and Yonekura-Sakakibara, K. 2008. Decoding genes with coexpression networks and metabolomics - ‘majority report by precogs’. Trends Plant Sci 13: 36-43.

    PubMed  CAS  Google Scholar 

  32. Aoki, K., Ogata, Y., and Shibata, D. 2007. Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol 48: 381-390.

    PubMed  CAS  Google Scholar 

  33. Ehlting, J., Mattheus, N., Aeschliman, D.S., Li, E., Hamberger, B., Cullis, I.F., Zhuang, J., Kaneda, M., Mansfield, S.D., Samuels, L., Ritland, K., Ellis, B.E., Bohlmann, J., and Douglas, C.J. 2005. Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42: 618-640.

    PubMed  CAS  Google Scholar 

  34. Gachon, C., Langlois-Meurinne, M., Henry, Y., and Saindrenan, P. 2005. Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: functional and evolutionary implications. Plant Mol Biol 58: 229-245.

    PubMed  CAS  Google Scholar 

  35. Persson, S., Wei, H., Milne, J., Page, G.P., and Somerville, C.R. 2005. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA 102: 8633-8638.

    PubMed  CAS  Google Scholar 

  36. Toufighi, K., Brady, S.M., Austin, R., Ly, E., and Provart, N.J. 2005. The Botany Array Resource: e-northerns, expression angling, and promoter analyses. Plant J 43: 153-163.

    PubMed  CAS  Google Scholar 

  37. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. 2004. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136: 2621-2632.

    CAS  Google Scholar 

  38. Koo, A.J.K., Chung, H.S., Kobayashi, Y., and Howe, G.A. 2006. Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in Arabidopsis. J Biol Chem 281: 33511-33520.

    PubMed  CAS  Google Scholar 

  39. Tohge, T., Nishiyama, Y., Hirai, M.Y., Yano, M., Nakajima, J.I., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D.B., Kitayama, M., Noji, M., Yamazaki, M., and Saito, K. 2005. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42: 218-235.

    PubMed  CAS  Google Scholar 

  40. Yonekura-Sakakibara, K., Tohge, T., Niida, R., and Saito, K. 2007. Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression analysis and reverse genetics. J Biol Chem 282: 14932-14941.

    PubMed  CAS  Google Scholar 

  41. Ehlting, J., Sauveplane, V., Olry, A., Ginglinger, J.F., Provart, N.J., and Werck-Reichhart, D. 2008. An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana. BMC Plant Biol 8: 47.

    PubMed  Google Scholar 

  42. Field, B. and Osbourn, A.E. 2008. Metabolic diversification - independent assembly of operon-like gene clusters in different plants. Science 320: 543-547.

    PubMed  CAS  Google Scholar 

  43. Hirai, M.Y., Sugiyama, K., Sawada, Y., Tohge, T., Obayashi, T., Suzuki, A., Araki, R., Sakurai, N., Suzuki, H., Aoki, K., Goda, H., Nishizawa, O.I., Shibata, D., and Saito, K. 2007. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104: 6478-6483.

    PubMed  CAS  Google Scholar 

  44. Gang, D.R., Wang, J., Dudareva, N., Nam, K.H., Simon, J.E., Lewinsohn, E., and Pichersky, E. 2001. An investigation of the storage and biosynthesis of phenylpropenes in Sweet Basil. Plant Physiol 125: 539-555.

    PubMed  CAS  Google Scholar 

  45. Lange, B.M., Wildung, M.R., Stauber, E.J., Sanchez, C., Pouchnik, D., and Croteau, R. 2000. Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci USA 97: 2934-2939.

    PubMed  CAS  Google Scholar 

  46. Guterman, I., Shalit, M., Menda, N., Piestun, D., fny-Yelin, M., Shalev, G., Bar, E., Davydov, O., Ovadis, M., Emanuel, M., Wang, J., Adam, Z., Pichersky, E., Lewinsohn, E., Zamir, D., Vainstein, A., and Weiss, D. 2002. Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14: 2325-2338.

    PubMed  CAS  Google Scholar 

  47. Jennewein, S., Wildung, M.R., Chau, M., Walker, K., and Croteau, R. 2004. Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc Natl Acad Sci USA 101: 9149-9154.

    PubMed  CAS  Google Scholar 

  48. Choi, D.-W., Jung, J., Ha, Y.I., Park, H.-W., In, D.S., Chung, H.-J., and Liu, J.R. 2005. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Reports 23: 557-566.

    PubMed  CAS  Google Scholar 

  49. Bertea, C.M., Voster, A., verstappen, F.W., Maffei, M., Beekwilder, J., and Bouwmeester, H.J. 2006. Isoprenoid biosynthesis in Artemisia annua: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Arch Biochem Biophys 448: 3-12.

    PubMed  CAS  Google Scholar 

  50. Ro, D.K., Paradise, E.M., Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Eachus, R.A., Ham, T.S., Kirby, J., Chang, M.C., Withers, S.T., Shiba, Y., Sarpong, R., and Keasling, J.D. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940-943.

    PubMed  CAS  Google Scholar 

  51. Teoh, K.H., Polichuk, D.R., Reed, D.W., Nowak, G., and Covello, P.S. 2006. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580: 1411-1416.

    PubMed  CAS  Google Scholar 

  52. Small, I. 2007. RNAi for revealing and engineering plant gene functions. Curr Opin Biotechnol 18: 148-153.

    PubMed  CAS  Google Scholar 

  53. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., guilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657.

    PubMed  Google Scholar 

  54. Li, Y., Rosso, M.G., Viehoever, P., and Weisshaar, B. 2007. GABI-Kat SsimpleSearch: an Arabidopsis thaliana T-DNA mutant database with detailed information for confirmed insertions. Nucleic Acids Res 35: D874-D878.

    PubMed  CAS  Google Scholar 

  55. Miyao, A., Tanaka, K., Murata, K., Sawaki, H., Takeda, S., Abe, K., Shinozuka, Y., Onosato, K., and Hirochika, H. 2003. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15: 1771-1780.

    PubMed  Google Scholar 

  56. Sessions, A., Burke, E., Presting, G., Aux, G., McElver, J., Patton, D., Dietrich, B., Ho, P., Bacwaden, J., Ko, C., Clarke, J.D., Cotton, D., Bullis, D., Snell, J., Miguel, T., Hutchison, D., Kimmerly, B., Mitzel, T., Katagiri, F., Glazebrook, J., Law, M., and Goff, S.A. 2002. A high-throughput Arabidopsis reverse genetics system. Plant Cell 14: 2985-2994.

    PubMed  CAS  Google Scholar 

  57. Bak, S., Tax, F.E., Feldmann, K.A., Galbraith, D.W., and Feyereisen, R. 2001. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 101-111.

    PubMed  CAS  Google Scholar 

  58. Comai, L. and Henikoff, S. 2006. TILLING: practical single-nucleotide mutation discovery. Plant J 45: 684-694.

    PubMed  CAS  Google Scholar 

  59. Slade, A.J. and Knauf, V.C. 2005. TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14: 109-115.

    PubMed  CAS  Google Scholar 

  60. Yamada, K., Lim, J., Dale, J.M., Chen, H., Shinn, P., Palm, C.J., Southwick, A.M., Wu, H.C., Kim, C., Nguyen, M., Pham, P., Cheuk, R., Karlin-Newmann, G., Liu, S.X., Lam, B., Sakano, H., Wu, T., Yu, G., Miranda, M., Quach, H.L., Tripp, M., Chang, C.H., Lee, J.M., Toriumi, M., Chan, M.M.H., Tang, C.C., Onodera, C., Deng, J.M., Akiyama, K., Ansari, Y., Arakawa, T., Banh, J., Banno, F., Bowser, L., Brooks, S., Carninci, P., Chao, Q., Choy, N., Enju, A., Goldsmith, A.D., Gurjal, M., Hansen, N.F., Hayashizaki, Y., Johnson-Hopson, C., Hsuan, V.W., Iida, K., Karnes, M., Khan, S., Koesema, E., Ishida, J., Jiang, P.X., Jones, T., Kawai, J., Kamiya, A., Meyers, C., Nakajima, M., Narusaka, M., Seki, M., Sakurai, T., Satou, M., Tamse, R., Vaysberg, M., Wallender, E.K., Wong, C., Yamamura, Y., Yuan, S., Shinozaki, K., Davis, R.W., Theologis, A., and Ecker, J.R. 2003. Empirical Analysis of Transcriptional Activity in the Arabidopsis genome. Science 302: 842-846.

    PubMed  CAS  Google Scholar 

  61. Gong, W., Shen, Y.P., Ma, L.G., Pan, Y., Du, Y.L., Wang, D.H., Yang, J.Y., Hu, L.D., Liu, X.F., Dong, C.X., Ma, L., Chen, Y.H., Yang, X.Y., Gao, Y., Zhu, D., Tan, X., Mu, J.Y., Zhang, D.B., Liu, Y., Lnesh-Kumar, S.P., Li, Y., Wang, X.P., Gu, H.Y., Qu, L.J., Bai, S.N., Lu, Y.T., Li, J.Y., Zhao, J.D., Zuo, J., Huang, H., Deng, X.W., and Zhu, Y.X. 2004. Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes. Plant Physiol 135: 773-782.

    PubMed  CAS  Google Scholar 

  62. Katsuyama, Y., Matsuzawa, M., Funa, N., and Horinouchi, S. 2007. In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa. J Biol Chem 282: 3770-3779.

    Google Scholar 

  63. Bohlmann, J., Martin, D., Oldham, N.J., and Gershenzon, J. 2000. Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-beta-ocimene synthase. Arch Biochem Biophys 375: 261-269.

    PubMed  CAS  Google Scholar 

  64. Chen, F., Tholl, D., D’Auria, J.C., Farooq, A., Pichersky, E., and Gershenzon, J. 2003. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15: 481-494.

    Google Scholar 

  65. Chen, F., Ro, D.K., Petri, J., Gershenzon, J., Bohlmann, J., Pichersky, E., and Tholl, D. 2004. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1, 8-cineole. Plant Physiol 135: 1956-1966.

    PubMed  CAS  Google Scholar 

  66. Fäldt, J., Arimura, G.-I., Gershenzon, J., Takabayashi, J., and Bohlmann, J. 2003. Functional identification of AtTPS03 as (E)-ß-ocimene synthase: a monoterpene synthase catalyzing jasmonate- and wound-induced volatile formation in Arabidopsis thaliana. Planta 216: 745-751.

    Google Scholar 

  67. Ro, D.K., Ehlting, J., Keeling, C.I., Lin, R., Mattheus, N., and Bohlmann, J. 2006. Microarray expression profiling and functional characterization of AtTPS genes: duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-gamma-bisabolene synthases. Arch Biochem Biophys 448: 104-116.

    PubMed  CAS  Google Scholar 

  68. Tholl, D., Chen, F., Petri, J., Gershenzon, J., and Pichersky, E. 2005. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42: 757-771.

    PubMed  CAS  Google Scholar 

  69. Ebizuka, Y., Katsube, Y., Tsutsumi, T., Kushiro, T., and Shibuya, M. 2003. Functional genomics approach to the study of triterpene biosynthesis. Pure Appl Chem 75: 369-374.

    CAS  Google Scholar 

  70. Fazio, G.C., Xu, R., and Matsuda, S.P.T. 2004. Genome mining to identify new plant triterpenoids. J Am Chem Soc 126: 5678-5679.

    PubMed  CAS  Google Scholar 

  71. Husselstein-Muller, T., Schaller, H., and Benveniste, P. 2001. Molecular cloning and expression in yeast of 2, 3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana. Plant Mol Biol 45: 75-92.

    PubMed  CAS  Google Scholar 

  72. Kolesnikova, M.D., Wilson, W.K., Lynch, D.A., Obermeyer, A.C., and Matsuda, S.P.T. 2007. Arabidopsis camelliol C synthase evolved from enzymes that make pentacycles. Org Lett 9: 5223-5226.

    PubMed  CAS  Google Scholar 

  73. Lodeiro, S., Xiong, Q., Wilson, W.K., Kolesnikova, M.D., Onak, C.S., and Matsuda, S.P.T. 2007. An oxidosqualene cyclase makes numerous products by diverse mechanisms: A challenge to prevailing concepts of triterpene biosynthesis. J Am Chem Soc 129: 11213-11222.

    PubMed  CAS  Google Scholar 

  74. Xiang, T., Shibuya, M., Katsube, Y., Tsutsumi, T., Otsuka, M., Zhang, H., Masuda, K., and Ebizuka, Y. 2006. A new triterpene synthase from Arabidopsis thaliana produces a tricyclic triterpene with two hydroxyl groups. Org Lett 8: 2835-2838.

    PubMed  CAS  Google Scholar 

  75. Xiong, Q., Wilson, W.K., and Matsuda, S.P. 2006. An Arabidopsis oxidosqualene cyclase catalyzes iridal skeleton formation by Grob fragmentation. Angew Chem Int Ed Engl 45: 1285-1288.

    PubMed  CAS  Google Scholar 

  76. Hou, B., Lim, E.K., Higgins, G.S., and Bowles, D.J. 2004. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana.J Biol Chem 279: 47822-47832.

    PubMed  CAS  Google Scholar 

  77. Lim, E.K., Doucet, C.J., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Ross, J., and Bowles, D.J. 2002. The activity of Arabidopsisglycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 277: 586-592.

    PubMed  CAS  Google Scholar 

  78. Lim, E.K., Doucet, C.J., Hou, B., Jackson, R.G., Abrams, S.R., and Bowles, D.J. 2005. Resolution of (+)-abscisic acid using an Arabidopsisglycosyltransferase. Tetrahedron: Asymmetry 16: 143-147.

    CAS  Google Scholar 

  79. Weis, M., Lim, E.K., Bruce, N., and Bowles, D. 2006. Regioselective glucosylation of aromatic compounds: Screening of a recombinant glycosyltransferase library to identify biocatalysts. Angew Chemie Int Ed 45: 3534-3538.

    CAS  Google Scholar 

  80. Kruse, T., Ho, K., Yoo, H.D., Johnson, T., Hippely, M., Park, J.H., Flavell, R., and Bobzin, S. 2008. In plantabiocatalysis screen of P450s identifies 8-methoxypsoralen as a substrate for the CYP82C subfamily, yielding original chemical structures. Chem Biol 15: 149-156.

    PubMed  CAS  Google Scholar 

  81. Schneider, K., Kienow, L., Schmelzer, E., Colby, T., Bartsch, M., Miersch, O., Wasternack, C., Kombrink, E., and Stuible, H.P. 2005. A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis thalianahas the catalytic capacity to activate biosynthetic precursors of jasmonic acid. J Biol Chem 280: 13962-13972.

    PubMed  CAS  Google Scholar 

  82. Olry, A., Schneider-Belhaddad, F., Heintz, D., and Werck-Reichhart, D. 2007. A medium-throughput screening assay to determine catalytic activities of oxygen-consuming enzymes: a new tool for functional characterization of cytochrome P450 and other oxygenases. Plant J 51: 331-340.

    PubMed  CAS  Google Scholar 

  83. Brockmann, R., Beyer, A., Heinisch, J., and Wilhelm, T. 2007. Posttranscriptional expression regulation: What determines translation rates? PLoS Comp Biol 3: e57.

    Google Scholar 

  84. Watson, B.S., Asirvatham, V.S., Wang, L., and Sumner, L.W. 2003. Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131: 1104-1123.

    PubMed  Google Scholar 

  85. Jones, A.M., Thomas, V., Bennett, M.H., Mansfield, J., and Grant, M. 2006. Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142: 1603-1620.

    PubMed  CAS  Google Scholar 

  86. Chen, S. and Harmon, A.C. 2006. Advances in plant proteomics. Proteomics 6: 5504-5516.

    PubMed  CAS  Google Scholar 

  87. Rose, J.K., Bashir, S., Giovannoni, J.J., Jahn, M.M., and Saravanan, R.S. 2004. Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39: 715-733.

    PubMed  CAS  Google Scholar 

  88. Thelen, J.J. and Peck, S.C. 2007. Quantitative proteomics in plants: choices in abundance. Plant Cell 19: 3339-3346.

    PubMed  CAS  Google Scholar 

  89. King, J. 2002. Recollections and reflections of a plant physiologist. Trends Plant Sci 7: 278-280.

    PubMed  CAS  Google Scholar 

  90. Fiehn, O. 2002. Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol 48: 155-171.

    PubMed  CAS  Google Scholar 

  91. Ryan, D. and Robards, K. 2006. Metabolomics: The greatest omics of them all? Anal Chem 78: 7954-7958.

    Google Scholar 

  92. Hall, R.D. 2006. Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169: 453-468.

    PubMed  CAS  Google Scholar 

  93. Hagel, J.M. and Facchini, P. 2008. Plant metabolomics: analytical platforms and integration with functional genomics. Phytochem Rev 7: 479-497.

    CAS  Google Scholar 

  94. Eisenreich, W. and Bacher, A. 2007. Advances of high-resolution NMR techniques in the structural and metabolic analysis of plant biochemistry. Phytochem 68: 2799-2815.

    CAS  Google Scholar 

  95. Abdel-Farid, I.B., Kim, H.K., Choi, Y.H., and Verpoorte, R. 2007. Metabolic characterization of Brassica rapa leaves by NMR spectroscopy. J Agric Food Chem 55: 7936-7943.

    PubMed  CAS  Google Scholar 

  96. Liang, Y.S., Choi, Y.H., Kim, H.K., Linthorst, H.J., and Verpoorte, R. 2006. Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy. Phytochem 67: 2503-2511.

    CAS  Google Scholar 

  97. Widarto, H.T., van der Meijden, E., Lefeber, A.W., Erkelens, C., Kim, H.K., Choi, Y.H., and Verpoorte, R. 2006. Metabolomic differentiation of Brassica rapa following herbivory by different insect instars using two-dimensional nuclear magnetic resonance spectroscopy. J Chem Ecol 32: 2417-2428.

    PubMed  CAS  Google Scholar 

  98. Aharoni, A., Ricd., V, Verhoeven, H.A., Maliepaard, C.A., Kruppa, G., Bino, R., and Goodenowe, D.B. 2002. Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics 6: 217-234.

    Google Scholar 

  99. Iijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., Suzuki, T., Suzuki, H., Okazaki, K., Kitayama, M., Kanaya, S., Aoki, K., and Shibata, D. 2008. Metabolite annotations based on the integration of mass spectral information. Plant J 54: 949-962.

    PubMed  CAS  Google Scholar 

  100. Broeckling, C.D., Huhman, D.V., Farag, M.A., Smith, J.T., May, G.D., Mendes, P., Dixon, R.A., and Sumner, L.W. 2005. Metabolic profiling of Medicagotruncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56: 323-336.

    PubMed  CAS  Google Scholar 

  101. Higdon, J.V., Delage, B., Williams, D.E., and Dashwood, R.H. 2007. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55: 224-236.

    PubMed  CAS  Google Scholar 

  102. Hirai, M.Y., Yano, M., Goodenowe, D.B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T., and Saito, K. 2004. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana.Proc Natl Acad Sci U S A 101: 10205-10210.

    PubMed  CAS  Google Scholar 

  103. Hirai, M.Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, D.B., Yamazaki, Y., Kanaya, S., Nakamura, Y., Kitayama, M., Suzuki, H., Sakurai, N., Shibata, D., Tokuhisa, J., Reichelt, M., Gershenzon, J., Papenbrock, J., and Saito, K. 2005. Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280: 25590-25595.

    PubMed  CAS  Google Scholar 

  104. Gion, J.M., Lalanne, C., Le, P.G., Ferry-Dumazet, H., Paiva, J., Chaumeil, P., Frigerio, J.M., Brach, J., Barre, A., de, D.A., Claverol, S., Bonneu, M., Sommerer, N., Negroni, L., and Plomion, C. 2005. The proteome of maritime pine wood forming tissue. Proteomics 5: 3731-3751.

    PubMed  CAS  Google Scholar 

  105. Fiorani Celedon, P.A., de Andrade A., Xavier Meireles, K.G., Gallo de Carvalho, M.C., Gomes Caldas, D.G., Moon, D.H., Carneiro, R.T., Franceschini, L.M., Oda, S., and Labate, C.A. 2007. Proteomic analysis of the cambial region in juvenile Eucalyptus grandis at three ages. Proteomics 7: 2258-2274.

    Google Scholar 

  106. Robinson, A.R., Ukrainetz, N.K., Kang, K.Y., and Mansfield, S.D. 2007. Metabolite profiling of Douglas-fir (Pseudotsuga menziesii) field trials reveals strong environmental and weak genetic variation. New Phytol 174: 762-773.

    PubMed  CAS  Google Scholar 

  107. Goossens, A., Hakkinen, S.T., Laakso, I., Seppanen-Laakso, T., Biondi, S., De, S., Lammertyn, F., Nuutila, A.M., Soderlund, H., Zabeau, M., Inze, D., and Oksman-Caldentey, K.M. 2003. A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100: 8595-8600.

    PubMed  CAS  Google Scholar 

  108. Rischer, H., Oresic, M., Seppanen-Laakso, T., Katajamaa, M., Lammertyn, F., rdiles-Diaz, W., Van Montagu, M.C., Inze, D., Oksman-Caldentey, K.M., and Goossens, A. 2006. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci USA 103: 5614-5619.

    PubMed  CAS  Google Scholar 

  109. Facchini, P.J., Hagel, J.M., Liscombe, D.K., Loukanina, N., MacLeod, B.P., Samanani, N., and Zulak, K.G. 2007. Opium poppy: blueprint for an alkaloid factory. Phytochem Rev 6: 97-124.

    CAS  Google Scholar 

  110. Decker, G., Wanner, G., Zenk, M.H., and Lottspeich, F. 2000. Characterization of proteins in latex of the opium poppy (Papaver somniferum) using two-dimensional gel electrophoresis and microsequencing. Electrophoresis 21: 3500-3516.

    PubMed  CAS  Google Scholar 

  111. Ounaroon, A., Decker, G., Schmidt, J., Lottspeich, F., and Kutchan, T.M. 2003. (R, S)-Reticuline 7-O-methyltransferase and (R, S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum - cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J 36: 808-819.

    PubMed  CAS  Google Scholar 

  112. Gang, D.R., Wang, J., Dudareva, N., Nam, K.H., Simon, J.E., Lewinsohn, E., and Pichersky, E. 2001. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 125: 539-555.

    PubMed  CAS  Google Scholar 

  113. Xie, Z., Kapteyn, J., and Gang, D.R. 2008. A systems biology investigation of the MEP/terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomes. Plant J 54: 349-361.

    PubMed  CAS  Google Scholar 

  114. Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., Pleban, T., Perez-Melis, A., Bruedigam, C., Kopka, J., Willmitzer, L., Zamir, D., and Fernie, A.R. 2006. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24: 447-454.

    PubMed  CAS  Google Scholar 

  115. Schauer, N., Semel, Y., Balbo, I., Steinfath, M., Repsilber, D., Selbig, J., Pleban, T., Zamir, D., and Fernie, A.R. 2008. Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20: 509-523.

    PubMed  CAS  Google Scholar 

  116. Sticklen, M.B. 2008. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9: 433-443.

    PubMed  CAS  Google Scholar 

  117. Rubin, E.M. 2008. Genomics of cellulosic biofuels. Nature 454: 841-845.

    PubMed  CAS  Google Scholar 

  118. Santoni, V., Molloy, M., and Rabilloud, T. 2000. Membrane proteins and proteomics: un amour impossible? Electrophoresis 21: 1054-1070.

    Google Scholar 

  119. Schad, M., Lipton, M.S., Giavalisco, P., Smith, R.D., and Kehr, J. 2005. Evaluation of two-dimensional electrophoresis and liquid chromatography - tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples. Electrophoresis 26: 2729-2738.

    PubMed  CAS  Google Scholar 

  120. Schad, M., Mungur, R., Fiehn, O., and Kehr, J. 2005. Metabolic profiling of laser microdissected vascular bundles of Arabidopsis thaliana.Plant Methods 1: 2.

    PubMed  Google Scholar 

  121. Cha, S., Zhang, H., Ilarslan, H.I., Wurtele, E.S., Brachova, L., Nikolau, B.J., and Yeung, E.S. 2008. Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry. Plant J 55: 348-360.

    PubMed  CAS  Google Scholar 

  122. Dunkley, T.P., Dupree, P., Watson, R.B., and Lilley, K.S. 2004. The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana.Biochem Soc Trans 32: 520-523.

    PubMed  CAS  Google Scholar 

  123. Dunkley, T.P., Hester, S., Shadforth, I.P., Runions, J., Weimar, T., Hanton, S.L., Griffin, J.L., Bessant, C., Brandizzi, F., Hawes, C., Watson, R.B., Dupree, P., and Lilley, K.S. 2006. Mapping the Arabidopsisorganelle proteome. Proc Natl Acad Sci USA 103: 6518-6523.

    PubMed  CAS  Google Scholar 

  124. Jones, A.M., Bennett, M.H., Mansfield, J.W., and Grant, M. 2006. Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Proteomics 6: 4155-4165.

    PubMed  CAS  Google Scholar 

  125. Liang,Y.S., Kim, H.K., Lefeber, A.W., Erkelens, C., Choi, Y.H., and Verpoorte, R. 2006. Identification of phenylpropanoids in methyl jasmonate treated Brassica rapa leaves using two-dimensional nuclear magnetic resonance spectroscopy. J Chromatogr A 1112: 148-155.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danièle Werck-Reichhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ehlting, J., Hamberger, B., Ginglinger, JF., Werck-Reichhart, D. (2009). Genome Wide Approaches in Natural Product Research. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_21

Download citation

Publish with us

Policies and ethics