Skip to main content

Water in Dairy Products

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

During the last 50 years, our knowledge of the properties and roles of water in foods has progressed very significantly; at the beginning of this period, the emphasis was on the binding of water to other constituents, which was supposed to impart to it special properties, different from those of bulk water. These concepts of free and bound water were used widely, although most often poorly defined. They can now be supplemented by much more precise descriptions of the properties of water present in food products, in terms of thermodynamics and molecular mobility. The concept of bound water in foods (as well as in biological systems) originated in various observations, such as increasing difficulty to dehydrate the materials and increasing irreversibility of the dehydration. The concept was backed up by the knowledge of the unique properties of the water molecule. The dipolar structure of the molecule and its ability to interact with various chemical groups of the other constituents actually are at the basis of the most important role of water in some sensory properties of foods and in many of the changes that occur during processing and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BET::

Brunauer, Emmett, Teller, 1938

DMTA::

dynamic thermal analysis

DS::

dielectric spectroscopy

DSE::

Debye-Stokes-Einstein

DSC::

differential scanning calorimetry

ERH::

equilibrium relative humidity

ESR::

electron spin resonance

GAB::

Guggenheim, 1966, Anderson, 1946, De Boer, 1953

GLT::

glass liquid transition

NEB::

non-enzymatic browning

NMR::

nuclear magnetic resonance

PALS::

positron annihilation lifetime spectroscopy

RH::

relative humidity

SI::

sorption isotherm

SMP::

skim milk powder

WMP::

whole milk powder

WPI::

whey protein isolate

References

  • Ablett, S., Darke, A.H., Izzard, M.J., Lillford, P.J. 1993. Studies of the glass transition in malto-oligomers. In: The Glassy State in Foods (J.M.V. Blanshard, P.J. Lillford, eds.), pp. 189–206, Nottingham Press, Nottingham.

    Google Scholar 

  • Abrams, D.S., Prausnitz, J.M. 1975. Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128.

    Article  CAS  Google Scholar 

  • Aguilera, M., del Valle, J.M. 1995. Structural changes in low moisture food powders. In: Food Preservation by Moisture Control. ISOPOW Practicum II (V. Barbosa-Canovas, J. Welti-Chanes, eds.), pp. 675–691, Technomic, Lancaster, PA, USA.

    Google Scholar 

  • Aldous, B.J. Franks, F., Greer, A.L. 1997. Diffusion of water within an amorphous carbohydrate. J. Mat. Sci. 32, 301–308.

    Article  CAS  Google Scholar 

  • Angell, C.A. 1985. Strong and fragile liquids. In: Relaxation in Complex Systems (K. Ngai and G.B. Wright, eds.), National Technical Information Service, US Dept Commerce, Springfield, VA, USA.

    Google Scholar 

  • Angell, C.A. 1993. Water is a “strong” liquid. J. Phys. Chem. 97, 6339–6341.

    Article  CAS  Google Scholar 

  • Angell, C.A. 1995. Formation of glasses from liquids and biopolymers. Science 267, 1924–1934.

    Article  CAS  Google Scholar 

  • Angell, C.A. 2001. Water: what we know and what we don’t. In: Water Science for Food, Health, Agriculture and Environment (ISOPOW 8) (Z. Berk, R.B. Leslie, P.J. Lillford, S. Mizrahi, eds.), pp. 1–30, Technomic, Lancaster, PA, USA.

    Google Scholar 

  • Angell, C.A. 2002. Liquid fragility and the glass transition in water and aqueous solutions. Chem. Rev. 102, 2627–2650.

    Article  CAS  Google Scholar 

  • Angell, C.A., Tucker, J.C. 1980. Heat capacity changes in glass-forming aqueous solutions and the glass transition in vitreous water. J. Phys. Chem. 84, 268–272.

    Article  CAS  Google Scholar 

  • Angell, C.A., Monnerie, L., Torell, L.M. 1991. Strong and fragile behavior in liquid polymers. Symp. Mat. Res. Soc. 215, 3–9.

    Article  CAS  Google Scholar 

  • Angell, C.A., Bressel, R.D., Hemmati, M., Sare, E.J., Tucker, J.C. 2000. Water and its anomalies in perspective: tetrahedral liquids with and without liquid-liquid phase transition. Phys. Chem. Chem. Phys. 2, 1559–1566.

    Article  CAS  Google Scholar 

  • Angell, C.A., Bressel, R.D., Green, J.L., Kanno, H., Oguni, M., Sare, E.J. 1994. Liquid fragility and the glass transition in water and aqueous solutions. In: Water in Foods: Fundamental Aspects and their Significance in Relation to Processing of Foods, ISOPOW V (P. Fito, A. Mulet, B. McKenna, eds.), pp. 75–88, Elsevier Applied Science, London.

    Google Scholar 

  • Atkins, P.W. 1998. Physical Chemistry, 6th edn., Oxford University Press, Oxford.

    Google Scholar 

  • Attenburrow, G.E., Davies, A.P., Goodband, R.M., Ingman, S.J. 1992. The fracture behavior of starch and gluten in the glassy state. J. Cereal Sci. 16, 1–12.

    Article  CAS  Google Scholar 

  • Badii, F., MacNaughtan, W., Farhat, I.A. 2005. Enthalpy relaxation of gelatin in the glassy state. Int. J. Biol. Macromol. 36, 263–269.

    Article  CAS  Google Scholar 

  • Badii, F., Martinet, C. Mitchell, J.R., Farhat, I.A. 2006. Enthalpy and mechanical relaxation of glassy gelatin films. Food Hydrocoll. 20, 879–884.

    Article  CAS  Google Scholar 

  • Banon, S., Hardy, J. 2002. L’Eau dans les produits laitiers. In: L’Eau dans les Aliments (M. LeMeste, D. Lorient, D. Simatos, eds.), pp. 235– 238, Lavoisier, Paris.

    Google Scholar 

  • Belton, P.S. 1990. Can nuclear magnetic resonance give useful information about the state of water in foodstuffs? Comments Agric. Food Chem. 2, 179–209.

    Google Scholar 

  • Benczedi, D. 1999. Estimation of the free volume of starch-water barriers. Trends Food Sci. Technol. 10, 21–24.

    Google Scholar 

  • Benczedi, D., Tomka, I., Escher, F. 1998a. Thermodynamics of amorphous starch-water systems 1. Volume fluctuations. Macromoecules 31, 3055–3061.

    Google Scholar 

  • Benczedi, D., Tomka, I., Escher, F. 1998b. Thermodynamics of amorphous starch-water systems 2.Concentration fluctations. Macromoecules 31, 3062–3074.

    Google Scholar 

  • Berlin, E., Anderson, B.A., Pallansch, M.J. 1968. Comparison of water vapor sorption by milk powder components. J. Dairy Sci. 51, 1912–1915.

    Article  Google Scholar 

  • Bhatnagar, B.S., Cardona, S., Pikal, M.J., Bogner, R.H. 2005. Reliable determination of freeze-concentration using DSC. Thermochim. Acta 425, 149–163.

    Article  CAS  Google Scholar 

  • Bidault, O., Assifaoui, A., Champion, D., LeMeste, M. 2005. Dielectric spectroscopy measurements of the sub-Tg relaxations in amorphous ethyl cellulose: A relaxation magnitude study. J. Non-Cryst. Solids 351, 1167–1178.

    Article  CAS  Google Scholar 

  • Biliaderis, C.G., Lazaridou, A., Arvanitoyannis, I. 1999. Glass transition and physical properties of polyol-plasticized pullulan-starch blends at low moisture. Carbohydr. Polym. 40, 29–47.

    Article  CAS  Google Scholar 

  • Blackburn, R.F., Wang, C.Y., Ediger, M.D. 1996. Translational and rotational motion of probes in supercooled 1.3.5-Tris(naphthyl)benzene. J. Phys. Chem. 100, 18249–18257.

    Article  CAS  Google Scholar 

  • Blond, G. 1988. Velocity of linear crystallization of ice in macromolecular systems. Cryobiology 25, 61–66.

    Article  CAS  Google Scholar 

  • Blond, G. 1994. Mechanical properties of frozen model solutions. In: Water in Foods: Fundamental Aspects and their Significance in relation to Processing of Foods, ISOPOW V (P. Fito, A. Mulet, B. McKenna, eds.), pp. 253–269, Elsevier Applied Science, London.

    Google Scholar 

  • Blond, G., Simatos, D. 1991. Glass transition of the amorphous phase in frozen aqueous systems. Thermochim. Acta 175, 239–247.

    Article  CAS  Google Scholar 

  • Blond, G., Simatos, D., Catté, M., Dussap, C.G., Gros, J.B. 1997. Modeling of the water-sucrose state diagram below 0°C. Carbohydr. Res. 298, 139–145.

    Article  CAS  Google Scholar 

  • Borde, B. 1999. Mobilité Moléculaire et Processus de Relaxation dans des Polysaccharides Amorphes Partiellement Hydratés, Thèse de doctorat, INSA, Lyon.

    Google Scholar 

  • Borde, B., Bizot, H., Vigier, G., Buleon, A. 2002. Calorimetric analysis of the structural relaxation in partially hydrated amorphous polysaccharides. I. Glass transition and fragility. Carbohydr. Polym. 48, 83–96.

    Article  CAS  Google Scholar 

  • Boulet, M., Britten, M, Lamarche, F. 1998. Voluminosity of some food proteins in aqueous dispersions at various pH and ionic strengths. Food Hydrocoll. 12, 433–441.

    Article  CAS  Google Scholar 

  • Brake, N.C., Fennema, O.R. 1999. Glass transition values of muscle tissue. J. Food Sci. 64, 10–15.

    Article  CAS  Google Scholar 

  • Bronlund, J., Paterson, T. 2004. Moisture sorption isotherms for crystalline, amorphous and predominantly crystalline lactose powders. Int. Dairy J. 14, 247–254.

    Article  CAS  Google Scholar 

  • Burin, L., Buera M.P. 2002. β-Galactosidase activity as affected by apparent pH and physical properties of reduced moisture systems. Enz. Microb. Technol. 30, 367–373.

    Article  CAS  Google Scholar 

  • Burin, L., Buera, M., Hough, G., Chirife, J. 2002. Thermal resistance of β-galactosidase in dehydrated dairy model systems as affected by physical and chemical changes. Food Chem. 76, 423–430.

    Article  CAS  Google Scholar 

  • Buera, M.P., Schebor, C., Elizalde, B. 2005. Effects of carbohydrate crystallisation on dehydrated food and ingredient formulations. J. Food Eng. 67, 157–165.

    Article  Google Scholar 

  • Caldwell, K.B., Goff, H.D., Stanley, D.W. 1992. A low temperature scanning electron microscopy study of ice cream. II. Influence of selected ingredients and processes. Food Struct. 11, 11–23.

    CAS  Google Scholar 

  • Cameron, N.R., Cowie, J.M.G., Ferguson, R., McEwan, I. 2001. Enthalpy relaxation of styrene-maleic anhydride (SMA) copolymers, 2. Blends with poly(methylmethacrylate) (PMMA). Polymer 42, 6091–6097.

    Article  Google Scholar 

  • Cerveny, S, Schwartz, G.A. Bergman, R., Swenson, J. 2004. Glass transition and relaxation processes in supercooled water. Phys. Rev. Lett. 93, 245702.

    Article  CAS  Google Scholar 

  • Champion, D., Blond, G., Simatos, D. 1997a. Reaction rates at sub-zero temperatures in frozen sucrose solutions: a diffusion-controlled reaction. Cryo-Lett. 18, 251–260.

    Google Scholar 

  • Champion, D., Hervet, H., Blond, G., LeMeste, M., Simatos, D. 1997b. Translational diffusion in sucrose solutions in the vicinity of their glass transition temperature. J. Phys. Chem. B 101, 10674–10679.

    Google Scholar 

  • Champion, D., Blond, G., LeMeste, M., Simatos, D. 2000a. Reaction rate modeling in cryoconcentrated solutions: alkaline phosphatase-catalyzed DNPP hydrolysis. J. Agric. Food Chem. 48, 4942–4947.

    Google Scholar 

  • Champion, D., LeMeste, M., Simatos, D. 2000b. Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range. Trends Food Sci. Technol. 11, 41–55.

    Google Scholar 

  • Champion, D., Maglione, M., Niquet, G., Simatos, D., LeMeste, M. 2003. Study of α- and β-relaxation processes in supercooled sucrose liquids. J. Thermal Anal. Cal. 71, 249–261.

    Article  CAS  Google Scholar 

  • Champion, D., Simatos, D., LeMeste, M. 2004. Diffusion-controlled reactions in frozen products: how state diagrams may be used for the prediction of storage stability. In: Ice Cream II (B.W. Tharp, ed.), pp. 264–275, International Dairy Federation Brussels.

    Google Scholar 

  • Chang, B.S., Randall, C.S. 1992. Use of subambient thermal analysis to optimize protein lyophilization. Cryobiology 29, 632–656.

    Article  CAS  Google Scholar 

  • Chang, Y.P., Cheah, P.B., Seow, C.C. 2000. Plasticizing-antiplasticizing effect of water on tapioca starch films in the glassy state. J. Food Sci. 3, 445–451.

    Article  Google Scholar 

  • Chang, L., Milton, N., Rigsbee, D., Mishra, D.S., Tang, X., Thomas, L.C., Pikal, M.J. 2006. Using modulated DSC to investigate the origin of multiple thermal transitions in frozen 10% sucrose solutions. Thermochim. Acta 442, 25–31.

    Article  CAS  Google Scholar 

  • Chen, X.D. 2007. Conformability of the kinetics of cohesion/stickiness development in amorphous sugar particles to the classical Arrhenius law. J. Food Eng. 79, 675–680.

    Article  CAS  Google Scholar 

  • Chirife, J., Buera, M.P. 1996. Water activity, water glass dynamics and the control of microbiological growth in foods. Crit. Rev. Food Sci. Nutr. 36, 465–513.

    Article  CAS  Google Scholar 

  • Chirife, J., Favetto, G., Ferro Fontan, C. 1982. The water activity of fructose solutions in the intermediate moisture range. Lebensm. Wiss. Technol. 15, 159–160.

    CAS  Google Scholar 

  • Chirife, J., Ferro Fontan, C. 1980. Prediction of water activity of aqueous solutions in connection with intermediate moisture foods: experimental investigation of the a w lowering behavior of sodium lactate and some related compounds. J. Food Sci. 45, 802–804.

    Article  CAS  Google Scholar 

  • Chirife, J., Ferro Fontan, C., Bennmergui, E.A. 1980. The prediction of water activity in aqueous solutions in connection with intermediate moisture foods: 4, a w prediction in non-electrolyte solutions. J. Food Technol. 15, 59–70.

    Article  CAS  Google Scholar 

  • Chung, H-J., Yoo, B., Lim, S-T. 2005. Effects of physical aging on thermal and mechanical properties of glassy normal corn starch. Starch/Stärke 57, 354–362.

    Article  CAS  Google Scholar 

  • Claude, J., Ubbink, J. 2006. Thermal degradation of carbohydrate polymers in amorphous states: A physical study including colorimetry. Food Chem. 96, 402–410.

    Article  CAS  Google Scholar 

  • Cohen, M.H., Turnbull, D. 1959. Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164–1169.

    Article  CAS  Google Scholar 

  • Colas, B., Courthaudon, J.-L., LeMeste, M., Simatos, D. 1988a. Functional properties of caseinates: the role of flexibility of the protein and of its hydration level on surface properties. In: Functional Properties of Food Proteins (R. Lasztity, M. Ember-Karpati, eds.), pp. 186–194, Federation of Technical and Scientific Societies (MTESZ), Budapest.

    Google Scholar 

  • Colas, B., Gobin, C., Lorient, D. 1988b. Viscosity and voluminosity of caseins chemically modified by reductive alkylation with reducing sugars. J. Dairy Res. 55, 539–546.

    Google Scholar 

  • Contreras-Lopez, E., Champion, D., Hervet, H., Blond, G., LeMeste, M. 2000. Rotational and translational mobility of small molecules in sucrose-polysaccharide solutions. J. Agric. Food Chem. 48, 1009–1015.

    Article  CAS  Google Scholar 

  • Couchman, P. R. 1978. Compositional variation of glass-transition temperatures. 2. Application of the thermodynamic theory to compatible polymer blends. Macromolecules 11, 1156–1161.

    Article  CAS  Google Scholar 

  • Craig, I.D., Parker, R., Rigby, N.M., Cairns, P., Ring, S.G. 2001. Maillard reaction kinetics in model preservation systems in the vicinity of the glass transition. J. Agric. Food Chem. 49, 4706–4712.

    Article  CAS  Google Scholar 

  • Debenedetti, P.G. 2003. Supercooled and glassy water. J. Phys.: Condens. Matter 15, R1669–R1726.

    Article  CAS  Google Scholar 

  • De Graaf, E.M., Madeka, H., Cocero, A.M., Kokini, J. L. 1993. Determination of the effect of moisture on gliadin glass transition using mechanical spectrometry and differential scanning calorimetry. Biotechnol. Prog. 9, 210–213.

    Article  Google Scholar 

  • Denisov, V.P., Halle, B. 1995. Protein hydration dynamics in aqueous solution: a comparison of bovine pancreatic trypsin inhibitor and ubiquitin by oxygen-17 spin relaxation dispersion. J. Mol. Biol. 245, 682–697.

    Article  CAS  Google Scholar 

  • Desobry, S. and Hardy, J. 1994. Camembert cheese water loss through absorbent packaging. J. Food Sci. 59, 986–989.

    Article  CAS  Google Scholar 

  • Doster, W., Settles, M. 2005. Protein–water displacement distributions. Biochim. Biophys. Acta 1749, 173–186.

    Article  CAS  Google Scholar 

  • Duckworth, R.B., Allison, J.Y., Clapperton, H.A.A. 1976. The aqueous environment for chemical change in intermediate moisture foods. In: Intermediate Moisture Foods (R. Davies, G.C. Birch, K.J. Parker, eds.), pp. 89–99, Applied Science Publications, London.

    Google Scholar 

  • Ediger, M.D., Angell, C.A., Nagel, S.R. 1996. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212.

    Article  CAS  Google Scholar 

  • Einfeldt, J., Meissner, D., Kwasniewski, A. 2004. Molecular interpretation of the main relaxations found in dielectric spectra of cellulose-experimental arguments. Cellulose 11, 137–150.

    Article  CAS  Google Scholar 

  • Emschwiller, G. 1951. Chimie Physique, Presses Universitaires de France, Paris.

    Google Scholar 

  • Ennis, M. P., O’Sullivan, M.M., Mulvihill, D.M. 1998. The hydration behaviour of rennet caseins in calcium chelating salt solution as determined using a rheological approach. Food Hydrocoll. 12, 451–457.

    Article  CAS  Google Scholar 

  • Esteban, M.A., Marcos, A. 1990. Equations for calculation of water activity in cheese from its chemical composition: a review. Food Chem. 36, 179–186.

    Article  Google Scholar 

  • Faldt, P. and Bergenstahl, B. 1996. Spray-dried whey protein/lactose/soybean oil emulsions. 2. Redispersibility, wettability and particle structure. Food Hydrocoll. 10, 431–439.

    Article  Google Scholar 

  • Farahnaky, A., Badii, F., Farhat, I.A., Mitchell, J.R., Hill, S.E. 2005. Enthalpy relaxation of bovine serum albumin and implications for its storage in the glassy state. Biopolymers 78, 69–77.

    Article  CAS  Google Scholar 

  • Farhat, I.A., Blanshard, J.M.V., Mitchell, J.R. 2000. The retrogradation of waxy maize starch extrudates: effects of storage temperature and water content. Biopolymers 53, 411–422.

    Article  CAS  Google Scholar 

  • Fernandez, E., Schebor, C., Chirife, J. 2003. Glass transition temperature of regular and lactose hydrolysed milk powders. Lebensm.-Wiss. Techn. 36, 547–551.

    Article  CAS  Google Scholar 

  • Ferro Fontan, C., Benmergui, E.A., Chirife, J. 1980. The prediction of water activity of aqueous solutions in connection with intermediate moisture foods. III: a w prediction in multicomponent strong electrolyte aqueous solutions. J. Food Technol. 15, 47–58.

    Article  CAS  Google Scholar 

  • Ferry, J.D. 1980. Viscoelastic Properties of Polymers, 3rd ed., John Wiley, New York.

    Google Scholar 

  • Finegold, L., Franks, F., Hatley, R.H.M. 1989. Glass/rubber transitions and heat capacities of binary sugar blends. J. Chem. Soc. Faraday Trans. 85, 2945–2951.

    Article  CAS  Google Scholar 

  • Fitzpatrick, J.J., Iqbal, T., Delaney, C., Twomey, T., Keogh, M.K. 2004. Effect of powder properties and storage conditions on the flowability of milk powders with different fat contents. J. Food Eng. 64, 435–444.

    Article  Google Scholar 

  • Fitzpatrick, J.J., Barry, K., Cerqueira, P.S.M., Iqbal, T., O’ Neill, J., Roos, Y.H. 2007. Effect of composition and storage conditions on the flowability of dairy powders. Int. Dairy J. 17, 383–392.

    Article  CAS  Google Scholar 

  • Flory, P.J. 1953. Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, NewYork.

    Google Scholar 

  • Fontanet, I., Davidou, S., Dacremont, C., LeMeste, M. 1997. Effect of water on the mechanical behavior of extruded flat bread. J. Cereal Sci. 25, 303–311.

    Article  Google Scholar 

  • Foster, K.D. Bronlund, J.E., Paterson, T. 2005. The prediction of moisture sorption isotherms for dairy powders. Int. Dairy J. 15, 411–418.

    Article  CAS  Google Scholar 

  • Franks, F. 1985. Complex aqueous systems at subzero temperatures. In: Properties of Water in Foods (D. Simatos, J.-L. Multon, eds.), pp. 497–509, M. Nijhoff Publications, Dordrecht.

    Chapter  Google Scholar 

  • Franks, F. 1993. Solid aqueous solutions. Pure Appl. Chem. 65, 2527–2537.

    Article  CAS  Google Scholar 

  • Fredenslund, A., Gmehling, J., Michelsen, M.L., Rasmussen, P., Prausnitz, J.M. 1977. Computerized design of multicomponent distillation columns using UNIFAC group-contribution method for calculation of activity coefficients. Ind. Eng. Chem. Des. Dev. 16. 450–462.

    Article  CAS  Google Scholar 

  • Fujara, F., Geil, B., Sillescu, H., Fleischer, G. 1992. Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition. Z. Phys. B 195–204.

    Google Scholar 

  • Gabarra, P., Hartel, R.W. 1998. Corn syrup solids and their saccharide fractions affect crystallization of amorphous sucrose. J. Food Sci. 63, 523–528.

    Article  CAS  Google Scholar 

  • Gaiani, C., Scher, J. Schuck, P., Hardy, J., Desobry, S., Banon, S. 2006. The dissolution behaviour of native phosphocaseinate as a function of concentration and temperature using a rheological approach. Int. Dairy J. 16, 1427–1424.

    Google Scholar 

  • Gaiani, C., Scher, J., Ehrhart, J.-J., Linder, M., Schuck, P., Desobry, S., Banon, S. 2007a. Relationships between dairy powder surface composition and wetting properties during storage: Importance of residual lipids. J. Agric. Food Chem. 53, 6561–6567.

    Google Scholar 

  • Gaiani, C., Schuck, P., Scher, J., Desobry, S., Banon, S. 2007b. Dairy powder rehydration: Influence of protein state, incorporation mode, and agglomeration. J. Dairy Sci. 90, 570–581.

    Google Scholar 

  • Geurts, T.J., Walstra, P., Mulder, H. 1980. Transport of salt and water during salting of cheese. 2. Quantities of salt taken up and of moisture lost. Neth. Milk Dairy J. 34, 229–254.

    Google Scholar 

  • Giannakourou, M.C., Taoukis, P.S. 2003. Kinetic modelling of vitamin C loss in frozen green vegetables under variable storage conditions. Food Chem. 83, 33–41.

    Article  CAS  Google Scholar 

  • Goff, H.D., Caldwell, K.B., Stanley, D.W., Maurice, T.J. 1993. The influence of polysaccharides on the glass transition in frozen sucrose solutions and ice cream. J. Dairy Sci. 76, 1268–1277.

    Article  CAS  Google Scholar 

  • Goff, H.D., Montoya, K., Sahagian, M.E. 2002. The effect of microstructure on the complex glass transition occurring in frozen sucrose model systems and foods. In: Progress in Amorphous Food and Pharmaceutical Systems (H. Levine, ed.), pp. 145–157, Royal Society of Chemistry, Cambridge, USA.

    Chapter  Google Scholar 

  • Goff, H.D., Verespej, E., Jermann, D. 2003. Glass transitions in frozen sucrose solutions are influenced by solute inclusions within ice crystals. Thermochim. Acta 399, 43–55.

    Article  CAS  Google Scholar 

  • Grattard, N., Salaun, F., Champion, D., Roudaut, G., LeMeste, M. 2002. Influence of physical state and molecular mobility of freeze-dried maltodextrin matrices on the oxidation rate of encapsulated lipids. J. Food Sci. 67, 3002–3010.

    Article  CAS  Google Scholar 

  • Green, J.L., Fan, J., Angell, C.A. 1994. The protein-glass analogy: some insights from homopeptide comparisons. J. Phys. Chem. 98, 13780–13790.

    Article  CAS  Google Scholar 

  • Green, J.E., Sitaula, R., Fowler, A., Toner, M., Bhowmick, S. 2007. Enthalpic relaxation of convective desiccated trehalose-water glasses. Thermochim. Acta 453, 1–8.

    Article  CAS  Google Scholar 

  • Gregory, R.B. 1995. Protein hydration and glass transition behavior. In: Protein-solvent Interactions (R.B. Gregory, ed.), pp. 191–264, Marcel Dekker, New York.

    Google Scholar 

  • Gregory, R.B. 1998. Protein hydration and glass transition. In: The Properties of Water in Foods. ISOPOW 6, (D.S. Reid, ed.), pp. 57–99, Blackie, London.

    Chapter  Google Scholar 

  • Griffin, D.M. 1981. Water and microbial stress. Adv. Microb. Ecol. 5, 91–136.

    Article  CAS  Google Scholar 

  • Hagiwara, T., Hartel, R.W. 1996. Effect of sweetener, stabilizer and storage temperature on ice recrystallization in ice cream. J. Dairy Sci. 79, 735–744.

    Article  CAS  Google Scholar 

  • Hall, D.B., Deppe, D.D., Hamilton, K.E., Dhinojwala, A., Torkelson, J. 1998. Probe translational and rotational diffusion in polymers near Tg: Role of probe size, shape and secondary bonding in deviations from Debye-Stokes-Einstein scaling. J. Non-Cryst. Solids 235–237, 48–56.

    Article  Google Scholar 

  • Hallbrucker, A., Mayer, E., Johari, G.P. 1989. The heat capacity and glass transition of hyperquenched glassy water. Phil. Mag. B 60, 179–187.

    Article  CAS  Google Scholar 

  • Halle, B. 2004. Protein hydration dynamics in solution: a critical survey. Phil. Trans. R. Soc. Lond. B 359, 1207–1224.

    Google Scholar 

  • Halle, B., Andersson, T., Forsén, S., Lindman, B. 1981. Protein hydration from water oxygen-17 magnetic relaxation. J. Amer. Chem. Soc. 103, 500–508.

    Article  CAS  Google Scholar 

  • Halle, B., Davidovic, M. 2003. Biomolecular hydration: From water dynamics to hydrodynamics. Proc. Nat. Acad. Sci, USA 100, 12135–12140.

    Article  CAS  Google Scholar 

  • Hancock, B.C., Zografi, G. 1993. The use of solution theories for predicting water vapor absorption by amorphous pharmaceutical solids: A test of the Flory-Huggins and Vrentas models. Pharm. Res. 9, 1262–1267.

    Article  Google Scholar 

  • Haque, M.K., Roos, Y.H. 2004. Water sorption and plasticization behavior of spray-dried lactose/protein mixtures. J. Food Sci. 69, 384–391.

    Article  Google Scholar 

  • Hardy, J. 1983. Diffusion et Distribution du Chlorure de Sodium dans les Fromages. Influence sur l’Activité de l’Eau et les Propriétés de Sorption de l’Eau. Thèse d’Etat, INPL, Nancy, France.

    Google Scholar 

  • Hartel, R.W. 1998. Mechanisms and kinetics of recrystallization in ice cream. In: The Properties of Water in Foods. ISOPOW 6 (D.S. Reid, ed.), pp. 287–319, Blackie, London.

    Chapter  Google Scholar 

  • Hashimoto, T. Hagiwara, T. Suzuki, T., Takai, R. 2004. Study on the enthalpy relaxation of Katsuobushi (dried glassy fish meat) by differential scanning calorimetry and physical ageing upon its water sorption ability. Jap. J. Food Eng. 5, 11–19.

    Google Scholar 

  • Hemminga, M., Van den Dries, I.J., Magusin, P.C., van Duschoten, D., van den Berg, C. 1999. Molecular mobility in food components as studied by magnetic resonance spectroscopy. In: Water Management in the Design and Distribution of Quality Foods, ISOPOW 7 (Y.H. Roos, R.B. Leslie, P.J. Lillford, eds.), pp. 255–265, Technomic, Lancaster, PA, USA.

    Google Scholar 

  • Herrera, J.R., Roos, Y.H. 2001. A kinetic study on formaldehyde production in cryostabilized water-soluble fish muscle extracts. Innov. Food Sci. Emerging Technol. 1, 227–235.

    Article  Google Scholar 

  • Hills, B.P., Takacs, S.F., Belton, P.S. 1990. A new interpretation of proton NMR relaxation time measurements of water in food. Food Chem. 37, 95–111.

    Article  CAS  Google Scholar 

  • Hills, B.P., Wang, Y.L., Tang, H.R. 2001. Molecular dynamics in concentrated sugar solutions and glasses. An NMR field cycling study. Mol. Phys. 99, 1679–1687.

    Article  CAS  Google Scholar 

  • Hinrichs, R., Goetz, J., Weisser, H. 2003. Water-holding capacity and structure of hydrocolloid-gels, WPC-gels and yoghurts characterised by means of NMR. Food Chem. 82, 155–160.

    Article  CAS  Google Scholar 

  • Hinrichs, R., Goetz, J., Noll, M., Wolfscoon, A., Eibel, H., Weisser, H. 2004a. Characterisation of different treated whey protein concentrates by means of low-resolution nuclear magnetic resonance. Int. Dairy J. 14, 814–827.

    Google Scholar 

  • Hinrichs, R., Goetz, J., Noll, M., Wolfscoon, A., Eibel, H., Weisser, H. 2004b. Characterisation of the water-holding capacity of fresh cheese samples by means of low resolution nuclear magnetic resonance. Food Res. Int. 37, 667–676.

    Google Scholar 

  • Hodge, I.M. 1994. Enthalpy relaxation and recovery in amorphous materials. J. Non-Cryst. Solids 169, 211–266.

    Article  CAS  Google Scholar 

  • Hutchinson, J.M. 1995. Physical aging of polymers. Prog. Polym. Sci. 20, 703–760.

    Article  CAS  Google Scholar 

  • Iglesias, H.A., Chirife, J. 1982. Handbook of Food Isotherms: Water Sorption Parameters for Food and Food Components. Academic Press, New York.

    Google Scholar 

  • Inoue, C., Ishikawa, M. 2000.The contribution of water to the specific heat change at the glass-to-rubber transition of the ternary system BSA-water NaCl. J. Food Sci. 65, 1187–1193.

    Article  CAS  Google Scholar 

  • ISOPOW 2000, expert panel: Critical Issues Related to Water Activity and Glass Transition. Panel discussion, ISOPOW 2000, Zichron Yaakov, Israel, Sept. 2000.

    Google Scholar 

  • ISOPOW 2006. Micro- and Nano-Scale Techniques in the Analysis of Food Structures. IUFoST-ISOPOW symposium, 13th World Congress of Food Science and Technology Nantes.

    Google Scholar 

  • Jansson, H., Bergman, R., Swenson, J. 2005a. Dynamics of sugar solutions as studied by dielectric spectroscopy. J. Non-Cryst. Solids 351, 2858–2863.

    Google Scholar 

  • Jansson, H., Bergman, R., Swenson, J. 2005b. Relation between solvent and protein dynamics as studied by dielectric spectroscopy. J. Phys. Chem. B 109, 24134–24141.

    Google Scholar 

  • Jansson, H., Bergman, R., Swenson, J. 2006. Protein and solvent dynamics as studied by QENS and dielectric spectroscopy. J. Non-Cryst. Sol. 352, 4410–4416.

    Article  CAS  Google Scholar 

  • Johari, G.P., Hallbrucker, A., Mayer, E. 1987. The glass-liquid transition of hyperquenched water. Nature 330, 552–553.

    Article  CAS  Google Scholar 

  • Jouppila, K., Roos, Y.H. 1994. Glass transitions and crystallization in milk powders. J. Dairy Sci. 77, 2907–2915.

    Article  CAS  Google Scholar 

  • Jul, M. 1984. The Quality of Frozen Foods, Academic Press, London.

    Google Scholar 

  • Kalichevsky, M.T., Jaroskiewicz, E.M., Blanshard, J.M.V. 1992. The glass transition of gluten. Int. J. Biol. Macromol. 14, 257–266.

    Article  CAS  Google Scholar 

  • Kalichevsky, M.T., Blanshard, J.M.V., Tokarczuk, P.F. 1993. Effect of water content and sugars on the glass transition of casein and sodium caseinate. Int. J. Food Sci. Technol. 28, 139–151.

    Article  CAS  Google Scholar 

  • Karel, M. 1985. Effects of water activity and water content on mobility of food components and their effects on phase transitions in food systems. In: Properties of Water in Foods (D. Simatos, J.-L. Multon, eds.), pp. 153–170, M. Nijhoff Publications, Dordrecht.

    Chapter  Google Scholar 

  • Karel, M. 1999. Food research tasks at the beginning of the new millenium. A personal vision. In: Water Management in the Design and Distribution of Quality Foods (ISOPOW VII), (Y.H. Roos, R.B. Leslie, P.J. Lillford, eds.), pp. 535–559, Technomic, Lancaster. PA, USA.

    Google Scholar 

  • Karel, M., Buera, M.P., Roos, Y. 1993. Effects of glass transition on processing and storage. In: The Glassy State in Foods (J.M.V. Blanshard, P.J. Lillford, eds.), pp. 12–34, Nottingham University Press, Nottingham, UK.

    Google Scholar 

  • Karel, M., Reid, D.S. 2000. Water science in food science and technology: future needs, potential sources of information and cooperation. Panel discussion, ISOPOW 2000, Zichron Yaakov, Israel, Sept. 2000.

    Google Scholar 

  • Karel, M., Saguy, I. 1991. Effects of water on diffusion in food systems. In: Water Relationships in Food (H. Levine, L. Slade, eds.), pp. 157– 174, Plenum Press, New York.

    Google Scholar 

  • Kawai, K. Hagiwara, T., Takai, R., Suzuki, T. 2004. Maillard reaction rate in various glassy matrices. Biosc-Biotechnol. Biochem. 68, 2285–2288.

    Article  CAS  Google Scholar 

  • Kawai, K. Hagiwara, T., Takai, R., Suzuki, T. 2005. Comparative investigation by two analytical approaches of enthalpy relaxation for glassy glucose, sucrose, maltose, and trehalose. Pharm. Res. 22, 490–495.

    Article  CAS  Google Scholar 

  • Kedward, C.J., MacNaughtan, W., Blanshard, J.M.V., Mitchell, J.R. 1998. Crystallization kinetics of lactose and sucrose based on isothermal differential scanning calorimetry. J. Food Sci. 63, 192–197.

    Article  CAS  Google Scholar 

  • Kedward, C.J., MacNaughtan, W., Mitchell, J.R. 2000. Crystallization kinetics of amorphous lactose as a function of moisture content using isothermal DSC. J. Food Sci. 2, 324–328.

    Article  Google Scholar 

  • Kilburn, D., Claude, J., Mezzenga, R., Dlubek, G., Alam, A., Ubbink, J. 2004. Water in glassy carbohydrates: Opening it up at the nanolevel. J. Phys. Chem. B 108, 12436–12441.

    Article  CAS  Google Scholar 

  • Kilburn, D., Claude, J., Schweizer, T., Alam, A., Ubbink, J. 2005. Carbohydrate polymers in amorphous states: An integrated thermodynamic and nanostructural investigation. Biomacromol. 6, 864–879.

    Article  CAS  Google Scholar 

  • Kim, S.S., Bhowmik, S.R. 1994. Moisture sorption isotherms of concentrated yogurt and microwave vacuum dried yogurt powder. J. Food Eng. 157–175.

    Google Scholar 

  • Kim, Y. J., Hagiwara, T., Kawi, K., Suzuki, T., Takai, R. 2003. Kinetic process of enthalpy relaxation of glassy starch and effect of physical aging upon its water permeability property. Carbohydr. Polym. 53, 289–296.

    Article  CAS  Google Scholar 

  • Kinsella, J.E., Fox, P.F. 1986. Water sorption by proteins: Milk and whey proteins. Crit. Rev. Food Sci. Nutr. 24, 91–139.

    Article  CAS  Google Scholar 

  • Kockel, T.K., Allen, S., Hennigs, C., Langrish, T.A.G. 2002. An experimental study of the equilibrium for skim milk powder at elevated temperatures. J. Food Eng. 51, 291–297.

    Article  Google Scholar 

  • Konopacka, D., Plocharsky, W., Beveridge, T. 2002. Water sorption and crispness of fat-free apple chips. J. Food Sci. 67, 87–92.

    Article  CAS  Google Scholar 

  • Kontogiorgios, V., Goff, H.D. 2006. Calorimetric and microstructural investigation of frozen hydrated gluten. FOBI 1, 202–215.

    Google Scholar 

  • Kou, Y., Molitor, P.F., Schmidt, S.J. 1999. Mobility and stability characterization of model food systems using NMR, DSC, and conidia germination techniques. J. Food Sci. 64, 950–959.

    Article  CAS  Google Scholar 

  • Kouassi, K., Roos, Y.H. 2001. Glass transition and water effects on sucrose inversion in non-crystalline carbohydrate food systems. Food Res. Int. 34, 895–901.

    Article  CAS  Google Scholar 

  • Kuntz, I.D., Kauzmann, W. 1974. Hydration of proteins and polypeptides. In: Advances in Protein Chemistry (C.B. Anfinsen, J.T. Edsall, F.M. Richards, eds.), pp. 239– 345, Academic Press, New York.

    Google Scholar 

  • Labuza, T.P. 1971. Kinetics of lipid oxidation in foods. CRC Crit. Rev. Food Technol. 2, 355–405.

    Article  Google Scholar 

  • LeMeste, M., Simatos, D. 1980. Use of electron spin resonance for the study of the “ante-melting” phenomenon, observed in sugar solutions by differential scanning calorimetry. Cryo-Lett. 1, 402–407.

    CAS  Google Scholar 

  • LeMeste, M., Aynié, S., Colas, B. 1992. Etude des propriétes viscoélastiques du pain de mie. Ind. Alim. Agric. 109, 862–866.

    Google Scholar 

  • LeMeste, M., Champion, D., Roudaut, G., Blond, G., Simatos, D. 2002. Glass transition and food technology: A critical appraisal. J. Food Sci. 67, 2444–2458.

    Article  CAS  Google Scholar 

  • LeMeste, M., Viguier, L., Lorient, D., Simatos, D. 1990. Rotational diffusivity of solutes in concentrated caseinate. Influence of glycosylation. J. Food Sci. 55, 724–727.

    Article  CAS  Google Scholar 

  • LeMeste, M., Voilley, A., Colas, B. 1991. Influence of water on the mobility of small molecules dispersed in polymeric systems. In: Water Relationships in Foods (H. Levine, L. Slade, eds.), pp. 123– 138, Plenum Press, New York.

    Google Scholar 

  • Levi, G., Karel, M. 1995. Volumetric shrinkage (collapse) in freeze-dried carbohydrates above their glass transition temperature. Food Res. Int. 2, 145–151.

    Article  Google Scholar 

  • Levine, H., Slade, L. 1988. Principles of cryostabilization technology from structure/property relationships of carbohydrate-water systems-a review. Cryo-Lett. 9, 21–63.

    CAS  Google Scholar 

  • Levine, H., Slade, L. 1989. Interpreting the behavior of low-moisture foods. In: Water and Food Quality (T.M. Hardman, ed.), pp. 71– 134, Elsevier, London.

    Google Scholar 

  • Levine, H., Slade, L. 1990. Cryostabilization technology : thermoanalytical evaluation of food ingredients and systems. In: Thermal Analysis of Foods (V.R. Harwalkar, C.Y. Ma, eds.), pp. 221– 305, Elsevier Applied Science, London.

    Google Scholar 

  • Lewicki, P.P. 2000. Raoult’s law based food water sorption isotherm. J. Food Eng. 43, 31–40.

    Article  Google Scholar 

  • Li, Y, Kloeppel K.M., Hsieh, F. 1998. Texture of glassy corn cakes as function of moisture content. J. Food Sci. 63,869–872.

    Article  CAS  Google Scholar 

  • Lievonen, S.M., Roos, Y.H. 2002. Non-enzymatic browning in amorphous food models: effects of glass transition and water. J. Food Sci. 67, 2100–2106.

    Article  CAS  Google Scholar 

  • Lievonen, S.M., Roos, Y.H. 2003. Comparison of dielectric properties and non-enzymatic browning kinetics around glass transition. Innov. Food Sci. Emerg. Technol. 4, 297–305.

    Article  CAS  Google Scholar 

  • Lillford, P.J., Clark, A.H., Jones, D.V. 1980. Distribution of water in heterogeneous food and model systems. In: Water in Polymers(S.P. Rowland, ed.), pp. 177–195, ACS Symposium Series, 27.

    Google Scholar 

  • Lin, S.X.Q. Chen X.D., Pearce D.L. 2005. Desorption isotherm of milk powders at elevated temperatures and over a wide range of relative humidity. J. Food Eng. 68, 257–264.

    Article  Google Scholar 

  • Liu, Y., Bhandari, B., Zhou, W. 2007. Study of glass transition and enthalpy relaxation of mixtures of amorphous sucrose and amorphous tapioca starch syrup solid by differential scanning calorimetry (DSC). J. Food Eng. 81, 599–610.

    Article  CAS  Google Scholar 

  • Livney, T., Goff, H.D., Verespej, E. 2003. On the calculation of ice cream freezing curves. Milchwissenschaft 58, 640–643.

    Google Scholar 

  • MacFarlane, D.R., Angell, C.A. 1984. Nonexistent glass transition for amorphous solid water. J. Phys. Chem. 88, 759–762.

    Article  CAS  Google Scholar 

  • Malec, L.S. Pereyra Gonzales, A.S., Naranjo, G.B., Vigo, M.S. 2002. Influence of water activity and storage temperature on lysine availability of a milk-like system. Food Res. Int. 35, 849–853.

    Article  CAS  Google Scholar 

  • Manzocco, L., Nicoli, M. C., Anese, M., Pitotti, A., Maltini, E. 1999. Polyphenoloxidase and peroxidase activity in partially frozen systems with different physical properties. Food Res. Int. 31, 363–370.

    Article  Google Scholar 

  • Mariette, F., Tellier, C., Brule, G., Marchal, P. 1993. Multinuclear NMR study of the pH dependent water state in skim milk and caseinate solutions. J. Dairy Res. 60, 175–188.

    Article  Google Scholar 

  • Mariette, F., Topgaard, D., Jonsson, B., Soderman, O. 2002. 1H NMR diffusometry study of water in casein dispersion and gels. J. Agric. Food Chem. 50, 4295–4302.

    Article  CAS  Google Scholar 

  • Marsh, R.D.L., Blanshard, J.M.V. 1988. The application of polymer crystal growth theory to the kinetics of formation of the β-amylose polymorph in a 50 % wheat starch gel. Carbohydr. Polym. 9, 301–317.

    Article  CAS  Google Scholar 

  • Marshall, A.S., Petrie, S.E.B. 1980. Thermal transitions in gelatin and aqueous gelatin solutions. J. Photographic Sci. 28, 128–134.

    CAS  Google Scholar 

  • Martins, R.C., Silva, C.L.M. 2002. Modelling colour and chlorophyll losses of frozen green beans (Phaseolus vulgaris, L.). Int. J. Refrig. 25, 966–974.

    Article  CAS  Google Scholar 

  • Mathlouthi, M. 1981. X-Ray diffraction study of the molecular association in aqueous solutions of D-fructose, and D-glucose, and sucrose. Carbohydr. Res. 91, 113–123.

    Article  CAS  Google Scholar 

  • Matveev, Y.I., Grinberg, V.Y., Tolstoguzov, V.B. 2000. The plasticizing effect of water on proteins, polysaccharides and their mixtures. The glassy state of biopolymers, foods and seeds. Food Hydrocoll. 14, 425–437.

    Article  CAS  Google Scholar 

  • Miao, S., Roos, Y.H. 2004. Nonenzymatic browning kinetics of a carbohydrate-based low-moisture food system at temperatures applicable to spray drying. J. Agric. Food Chem. 52, 5250–5257.

    Article  CAS  Google Scholar 

  • Miracco, J.L., Alzamora, S.M., Chirife, J., Ferro Fontan, C. 1981. On the water activity of lactose solutions. J. Food Sci. 46, 1612–1613.

    Article  CAS  Google Scholar 

  • Mizuno, A., Mitsuiki, M., Motoki, M. 1999. Glass transition temperature of casein as affected by transglutaminase. J. Food Sci. 64, 796–799.

    Article  CAS  Google Scholar 

  • Montès, H., Mazeau, K., Cavaillé, J.Y. 1998. The mechanical β relaxation in amorphous cellulose. J. Non-Cryst. Solids 235–237, 416–421.

    Article  Google Scholar 

  • Mora-Gutierrez, A., Farrell, H. M., Kumosinski, T.F. 1995. Comparison of hydration behavior of bovine and caprine caseins as determined by oxygen-17 nuclear magnetic resonance: effects of salt. J. Agric. Food Chem. 43, 2574–2579.

    Article  CAS  Google Scholar 

  • Mora-Gutierrez, A., Farrell, H. M., Kumosinski, T.F. 1996. Comparison of hydration behavior of bovine and caprine caseins as determined by oxygen-17 nuclear magnetic resonance: Temperature dependence of colloidal stability. J. Agric. Food Chem. 44, 48–53.

    Article  CAS  Google Scholar 

  • Morales, A., Kokini, J.L. 1997. Glass transition of soy globulins using differential scanning calorimetry and mechanical spectrometry. Biotechnol. Prog. 13, 624–629.

    Article  CAS  Google Scholar 

  • Mousia, Z., Farhat, I.A., Blachot, J.F., Mitchell, J.R.. 2000. Effect of water partitioning on the glass transition behaviour of phase separated amylopectin-gelatin mixtures. Polymer 41, 1841–1848.

    Article  CAS  Google Scholar 

  • Muhr, A.H., Blanshard, J.M.V. 1986. Effect of polysaccharide stabilizers on the rate of growth of ice. J. Food Technol. 21, 683–710.

    CAS  Google Scholar 

  • Mulet, A., Garcia-Reverter, J., Sanjuan, R., Bon, J. 1999. Sorption isosteric heat determination by thermal analysis and sorption isotherms. J. Food Sci. 1, 64–68.

    Article  Google Scholar 

  • Mulvihill, D.M., Fox, P.F. 1989. Physicochemical and functional properties of milk proteins. In: Developments in Dairy Chemistry 4, (P.F. Fox ed.), pp. 131–172, Elsevier Applied Science, London.

    Google Scholar 

  • Nicholls, R.J., Appelqvist, I.A.M., Davies, A.P., Ingman, S.J., Lillford, P.J. 1995. Glass transitions and fracture behavior of gluten and starches within the glassy state. J. Cereal Sci. 25–36.

    Google Scholar 

  • Noel, T.R., Ring, S.G., Whittam, M.A. 1990. Glass transitions in low-moisture foods. Trends Food Sci. Technol. 1, 62–67.

    Article  CAS  Google Scholar 

  • Noel, T.R., Parker, R., Ring, S.G., Tatham, A.S. 1995. The glass-transition behavior of wheat gluten proteins. Int. J. Biol. Macromol. 17, 81–85.

    Article  CAS  Google Scholar 

  • Norrish, R.S. 1966. Equation for the activity coefficients and equilibrium relative humidities of water in confectionery syrups. J. Food Technol. 1, 25–39.

    Article  CAS  Google Scholar 

  • Orford, P.D., Parker, R., Ring, S.G., Smith, A.C. 1989. The effect of water as a diluent on the glass transition behavior of malto-oligosaccharides, amylose and amylopectin. Int. J. Biol. Macromol. 11, 91–96.

    Article  CAS  Google Scholar 

  • Orlien, V., Risbo, J., Andersen, M.L., Skibsted, L.H. 2003. The question of high- and low-temperature glass transition in frozen fish. Construction of the supplemented state diagram for tuna by differential scanning calorimetry. J. Agric. Food Chem. 51, 211–217.

    Article  CAS  Google Scholar 

  • Ozkan, N., Walisinghe, N., Chen, X.D. 2002. Characterization of stickiness and cake formation in whole and skim milk powders. J. Food Eng. 55, 293–303.

    Article  Google Scholar 

  • Ozkan, N., Withy, B., Chen, X.D. 2003. Effects of time, temperature, and pressure on the cake formation of milk powders. J. Food Eng. 58, 355–361.

    Article  Google Scholar 

  • Paterson, A.H.J., Brooks, G.F., Bronlund, J.E., Foster, K.D. 2005. Development of stickiness in amorphous lactose at constant T-Tg levels. Int. Dairy J. 15, 513–519.

    Article  CAS  Google Scholar 

  • Peleg, M. 1993. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. J. Food Proc. Eng. 16, 21–37.

    Article  Google Scholar 

  • Perez, J. 1994. Theories of liquid-glass transition. In: Water in Foods: Fundamental Aspects and their Significance in relation to Processing of Foods, ISOPOW V (P. Fito, A. Mulet, B. McKenna, eds.), pp. 89– 114, Elsevier Applied Science, London.

    Google Scholar 

  • Perez, J., Cavaillé, J.Y. 1994. Temperature dependence of the molecular dynamics in amorphous polymers through the rubber-glass transition. J. Non-Cryst. Solids 172–174, 1028–1036.

    Article  Google Scholar 

  • Pitzer, K.S. 1980. Electrolytes: from dilute solutions to fused salts. J. Am. Chem. Soc. 96, 2902–2906.

    Article  Google Scholar 

  • Pitzer, K.S., Kim, J.J. 1974. Thermodynamics of electrolytes. III: activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707.

    Article  CAS  Google Scholar 

  • Poirier-Brulez, F., Roudaut G., Champion, D., Tanguy, M., Simatos, D. 2006. Influence of sucrose and water content on molecular mobility in starch-based glasses as assessed through structure and secondary relaxation. Biopolymers 81, 63–73.

    Article  CAS  Google Scholar 

  • Rasmussen, D. 1969. A note about “phase diagrams” of frozen tissues. Biodynamica 10, 333–339.

    CAS  Google Scholar 

  • Regand, A., Goff, H.D. 2003. Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocoll. 17, 95–102.

    Article  CAS  Google Scholar 

  • Regand, A., Goff, H.D. 2005. Freezing and ice recrystallization properties of sucrose solutions containing ice structuring proteins from cold-acclimated winter wheat grass extract. J. Food Sci. 70, E552–556.

    Article  CAS  Google Scholar 

  • Regand, A., Goff, H.D. 2006. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J. Dairy Sci. 89, 49–57.

    Article  CAS  Google Scholar 

  • Rennie, P.R., Chen, X.D., Hargreaves, C., Mackareth, A.R. 1999. A study of the cohesion of dairy powders. J. Food Eng. 39, 277–284.

    Article  Google Scholar 

  • Roos, Y.H., Karel, M. 1991a. Applying state diagrams to food processing and development. Food Technol. 45, 66–71.

    Google Scholar 

  • Roos, Y.H., Karel, M. 1991b. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J. Food Sci. 56, 38–43.

    Google Scholar 

  • Roos, Y.H., Karel, M. 1991c. Phase transitions of mixtures of amorphous polysaccharides and sugars. Biotechnol. Progress 7, 49–53.

    Google Scholar 

  • Roos, Y.H., Karel, M. 1992. Crystallization of amorphous lactose. J. Food Sci. 3, 775–777.

    Article  Google Scholar 

  • Roudaut, G., Dacremont, C., LeMeste, M. 1998. Influence of water on the crispness of cereal based foods: acoustic, mechanical, and sensory studies. J. Text. Stud. 29, 199–213.

    Article  Google Scholar 

  • Roudaut, G., Maglione, M., Van Duschotten, D., LeMeste, M. 1999a. Molecular mobility in glassy bread: a multi spectroscopic approach. Cereal Chem. 76, 70–77.

    Google Scholar 

  • Roudaut, G., Maglione, M., LeMeste, M. 1999b. Sub-Tg relaxations in bread and in its components. Cereal Chem. 76 , 78–81.

    Google Scholar 

  • Ruckold, S., Isengard, H-D., Hanss, J., Grobecker, K.H. 2003. The energy of interaction between water and surfaces of biological reference materials. Food Chem. 82, 51–59.

    Article  CAS  Google Scholar 

  • Ruegg, M. 1985. Water in dairy products related to quality, with special reference to cheese. In: Properties of Water in Foods (D. Simatos, J.-L. Multon, eds.), pp. 603– 625, Martinus Nijhoff Publications, Dordrecht.

    Chapter  Google Scholar 

  • Sa, M.M., Figueiredo, A.M., Sereno, A.M. 1999. Glass transition and state diagrams for fresh and processed apple. Thermochim. Acta 329, 31–38.

    Article  CAS  Google Scholar 

  • Saleki-Gerhardt, A., Zografi, G. 1994. Non-isothermal and isothermal crystallization of sucrose from the amorphous state. Pharm. Res. 11, 1166–1173.

    Article  CAS  Google Scholar 

  • Salomonsen, T., Sejersen, M.T., Viereck, N., Ipsen, R., Engelsen S.B. 2007. Water mobility in acidified milk drinks studied by low-field 1H NMR. Int. Dairy J. 17, 294–301.

    Article  CAS  Google Scholar 

  • Saurel, R, Pajonk, A., Andrieu, J. 2004. Modelling of French Emmental cheese water activity during salting and ripening periods. J. Food Eng. 63, 163–170.

    Article  Google Scholar 

  • Schawe, J.E.K. 2006. A quantitative DSC analysis of the metastable phase behaviour of the sucrose–water system. Thermochim. Acta 451, 115–125.

    Article  CAS  Google Scholar 

  • Schebor, C., Burin, L., Buera, M. P., Aguilera, J. M., Chirife, J. 1997. Glass state and thermal inactivation of invertase and lactase in dried amorphous matrixes. Biotechnol. Prog. 13, 857–863.

    Article  CAS  Google Scholar 

  • Sears, J.K., Darby, J.R. 1982. Mechanism of plasticizer action. In: The Technology of Plasticizers, pp. 35– 77, Wiley Intersci. Publications., New York.

    Google Scholar 

  • Sereno, A.M., Hubinger, M.D., Comesana, J.F., Correa, A. 2001. Prediction of water activity of osmotic solutions. J. Food Eng. 49, 103–114.

    Article  Google Scholar 

  • Shamblin, S.L., Hancock, B.C., Zografi, G. 1998. Water vapor sorption by peptides, proteins and their formulations. Eur. J. Pharm. Biopharm. 45, 239–247.

    Article  CAS  Google Scholar 

  • Sherwin, C.P., Labuza, T.P. 2003. Role of moisture in Maillard browning reaction rate in intermediate moisture foods: Comparing solvent phase and matrix properties. J. Food Sci. 68, 588–594.

    Article  CAS  Google Scholar 

  • Shrestha, A.K, Howes, T., Adhikari, B.P., Wood, B.J., Bhandari, B.R. 2007. Effect of protein concentration on the surface composition, water sorption and glass transition temperature of spray-dried skim milk powders. Food Chem. 104, 1436–1444.

    Article  CAS  Google Scholar 

  • Simatos, D., Faure, M., Bonjour, E., Couach, M. 1975. Differential thermal analysis and differential scanning calorimetry in the study of water in foods. In: Water Relations of Foods (R.B. Duckworth, ed.), pp. 193– 209, Academic Press, New York.

    Google Scholar 

  • Simatos, D., Blond, G. 1991. DSC studies and stability of frozen foods. In: Water Relationships in Foods (H. Levine, L. Slade, eds.), pp. 139– 155, Plenum Press, New York.

    Google Scholar 

  • Simatos, D., Blond, G. 1993. Some aspects of the glass transition in frozen foods systems. In: The Glassy State in Food (J.M.V. Blanshard, P.J. Lillford, eds.), pp. 395– 415, Nottingham University Press, Nottingham.

    Google Scholar 

  • Simatos, D., Blond, G., Martin, F. 1995a. Influence of macromolecules on the glass transition in frozen systems. In: Food Macromolecules and Colloids (E. Dickinson, D. Lorient, eds.), pp. 519– 533, Royal Society of Chemistry, Cambridge, UK.

    Google Scholar 

  • Simatos, D., Blond, G., Perez, J. 1995b. Basic physical aspects of glass transition. In: Food Preservation by Moisture Control. ISOPOW Practicum II (V. Barbosa-Canovas, J. Welti-Chanes, eds.), pp. 3– 31, Technomic, Lancaster, PA, USA.

    Google Scholar 

  • Simatos, D., Karel, M. 1988. Characterization of the condition of water in foods-physico-chemical aspects. In: Food Preservation by Moisture Control (C.C. Seow, ed.), pp. 1– 41, Elsevier Applied Science, London.

    Google Scholar 

  • Singh, K.J., Roos, Y.H. 2005. Frozen state transitions of sucrose–protein–cornstarch mixtures. J. Food Sci. 70, 198–204.

    Article  Google Scholar 

  • Singh, K.J., Roos, Y.H. 2006. State transitions and freeze concentration in trehalose–protein–cornstarch mixtures. Lebensmitt. Wiss. Technol. 39, 930–938.

    Article  CAS  Google Scholar 

  • Slade, L., Levine, H. 1985. Intermediate moisture systems; concentrated and supersaturated solutions; pastes and dispersions; water as plasticizer; the mystique of “bound” water; thermodynamics versus kinetics. In: Water Activity: a Credible Measure of Technological Performance and Physiological Stability? pp. 24– 27, Royal Society of Chemistry Discussion Conference, Cambridge University, Cambridge, UK.

    Google Scholar 

  • Slade, L., Levine, H. 1991. Beyond water activity: recent advances on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. Nutr. 30, 115–360.

    Article  CAS  Google Scholar 

  • Slade, L., Levine, H. 1993. Glass transition and water-food structure interactions. In: Advances in Nutrition and Food Research (L. Taylor, J.F. Kinsella, eds.), pp. 103– 269, Academic. Press, San Diego, CA, USA.

    Google Scholar 

  • Slade, L., Levine, H. 1994. Water and the glass transition-dependence of the glass transition on composition and chemical structure: Special implications for flour functionality in cookie baking. In: Water in Foods: Fundamental Aspects and their Significance in relation to Processing of Foods, ISOPOW V (P. Fito, A. Mulet, B. McKenna, eds.), pp. 143– 188, Elsevier Applied Science, London.

    Google Scholar 

  • Snoeren, T.H.M., Klok, H.J., Van Hooydonk, A.C.M., Damman, A.J. 1984. The voluminosity of casein micelles. Milchwissenschaft 39, 461–463.

    CAS  Google Scholar 

  • Sochava, I.V., Smirnova, O.I. 1993. Heat capacity of hydrated and dehydrated globular proteins. Food Hydrocoll. 6, 513–524.

    Article  CAS  Google Scholar 

  • Sperling, L.H. 1986. Introduction to Physical Polymer Science, Wiley & Sons, New York.

    Google Scholar 

  • Stapelfeldt, H., Nielsen, B.R., Skibsted, L.H. 1997. Effect of heat treatment, water activity and storage temperature on the oxidative stability of whole milk powder. Int. Dairy J. 7, 331–339.

    Article  CAS  Google Scholar 

  • Starr, F.W., Angell, C.A, La Nave, E., Sastry, S., Scala, A., Sciortino, F., Stanley, H.E. 2003. Recent results on the connection between thermodynamics and dynamics in supercooled water. Biophys. Chem. 105, 573–583.

    Article  CAS  Google Scholar 

  • Sugisaki, M., Suga, H., Seki, S. 1968. Calorimetric study of the glassy state. IV. Heat capacities of glassy water and cubic ice. Bull. Chem. Soc. Jp. 41, 2591–2599.

    Article  CAS  Google Scholar 

  • Surana, R., Pyne, A., Suryanarayanan, R. 2004. Effect of preparation method on physical properties of amorphous trehalose. Pharm. Res. 21, 1167–1176.

    Article  CAS  Google Scholar 

  • Sutton, R.L., Wilcox, J. 1998. Recrystallization in model ice cream solutions as affected by stabilizer concentration. J. Food Sci. 63, 9–11.

    Article  CAS  Google Scholar 

  • Swenson, J., Jansson, H., Bergman, R. 2006. Relaxation processes in supercooled confined water and implications for protein dynamics. Phys. Rev. Lett. 96, 247802, 1–4.

    Google Scholar 

  • Swenson, J., Jansson, H., Hedstrom, J., Bergman, R. 2007. Properties of hydration water and its role in protein dynamics. J. Phys.: Condens. Matter 19, 205109, 1–9.

    Google Scholar 

  • Terefe, N.S., Hendrickx, M. 2002. Kinetics of the pectin methylesterase-catalyzed de-esterification of pectin in frozen food model systems. Biotechnol. Prog. 18, 221–228.

    Article  CAS  Google Scholar 

  • Thomas, M.E.C., Scher, J., Desobry, S. 2004. Lactose/β-lactoglobulin interaction during storage of model whey powders. J. Dairy Sci. 87, 1158–1166.

    Article  CAS  Google Scholar 

  • Thomsen, M.K., Lauridsen, L., Skibsted, L.H., Risbo, J. 2005. Temperature effect on lactose crystallization, Maillard reactions, and lipid oxidation in whole milk powder. J. Agric. Food Chem. 53, 7082–7090.

    Article  CAS  Google Scholar 

  • Timmermann, E.O., Chirife, J., Iglesias, H.A. 2001. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? J. Food Eng. 48, 19–31.

    Article  Google Scholar 

  • Tromp, R.H., Parker, R., Ring, S.G. 1997. Water diffusion in glasses of carbohydrates. Carbohydr. Res. 303, 199–205.

    Article  CAS  Google Scholar 

  • Ubbink, J. Giardiello, M.I., Limbach, H.J. 2007. Sorption of water by bidisperse mixtures of carbohydrates in glassy and rubbery states. Biomacromol. 8, 2862–2873.

    Article  CAS  Google Scholar 

  • Van den Berg, C., Bruin, S. 1981. Water activity and its estimation in food systems. In: Water Activity: Influences on Food Quality (L.B. Rockland, G.F. Stewart, eds.), pp. 1– 61, Academic Press, New York.

    Google Scholar 

  • Van Vliet, T., Walstra, P. 1994. Water in casein gels: How to get it out or to keep it in. In: Water in Foods: Fundamental Aspects and their Significance in relation to Processing of Foods, ISOPOW V (P. Fito, A. Mulet, B. McKenna, eds.), pp. 75– 88, Elsevier Applied Science, London.

    Google Scholar 

  • Velikov, V., Borick, S., Angell, C.A. 2001. The glass transition of water, based on hyperquenching experiments. Science 294, 2335–2338.

    Article  CAS  Google Scholar 

  • Vrentas, J.S., Duda, J.L. 1978. A free volume interpretation of the influence of the glass transition on the diffusion in amorphous polymers. J. Appl. Polym. Sci. 22, 2325–2339.

    Google Scholar 

  • Vrentas, J. S., Duda, J.L., Ling, H.C. 1988. Antiplasticization and volumetric behavior in glassy polymers. Macromolecules 21, 1470–1475.

    Google Scholar 

  • Vuattaz, G. 1999. Prévention des transitions de phases dans les systèmes déshydratés pendant le traitement et le stockage. In: AGORAL 99: Les Produits Alimentaires et l’Eau, pp. 75– 86, Tec et Doc, Paris.

    Google Scholar 

  • Vuattaz, G. 2002. The phase diagram of milk: A new tool for optimising the drying process. Lait 82, 485–500.

    Article  CAS  Google Scholar 

  • Walstra, P. 1979. The voluminosity of bovine casein micelles and some of its implications. J. Dairy Res. 46, 317–323.

    Article  CAS  Google Scholar 

  • Weisser, H. 1985. Influence of temperature on sorption equilibria. In: Properties of Water in Foods, (D. Simatos, J.L. Multon, eds.), pp. 95–118, Martinus Nijhoff Publications, Dordrecht.

    Google Scholar 

  • Williams, M., Landel, R.F., Ferry, J.D. 1955. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707.

    Article  CAS  Google Scholar 

  • Wolf, W., Spiess, W.E.L., Jung, G. 1985. Sorption Isotherms and Water Activity of Food Materials, a Bibliography. Science and Technique Publications, London.

    Google Scholar 

  • Wolkers, W.F., Oldenhof, H., Alberda, M., Hoekstra, F.A. 1998. A Fourier transform infrared spectroscopy study of sugar glasses: Application to anhydrobiotic higher plant cells. Biochim. Biophys. Acta 83–96.

    Google Scholar 

  • Wungtanagorn, R., Schmidt, S.J. 2001a. Thermodynamic properties and kinetics of the physical aging of amorphous glucose, fructose and their mixture. J. Thermal Anal. Cal. 65, 9–35.

    Google Scholar 

  • Wungtanagorn, R., Schmidt, S.J. 2001b. Phenomenological study of enthalpy relaxation of amorphous glucose, fructose and their mixture. Thermochim. Acta 369, 95–116.

    Google Scholar 

  • Yetismeyen, A., Deveci, O. 2000. Some quality characteristics of spray dried skim milk powders produced by two different atomizers. Milchwissenschaft 55, 210–212.

    CAS  Google Scholar 

  • Zhang, J., Zografi, G. 2000. The relationship between “BET” and “Free Volume”-derived parameters for water vapor absorption into amorphous solids. J. Pharm. Sci. 89, 1063–1072.

    Google Scholar 

  • Zhou, P., Labuza, T.P. 2007. Effect of water content on glass transition and protein aggregation of whey protein powders during short-term storage. Food Biophysics, 2, 108–116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Simatos, D., Champion, D., Lorient, D., Loupiac, C., Roudaut, G. (2009). Water in Dairy Products. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84865-5_11

Download citation

Publish with us

Policies and ethics