Skip to main content

The Role of Expansins A in Petunia Development

  • Chapter
Petunia
  • 1356 Accesses

Abstract

Expansins, a diverse set of proteins found in plants and some other organisms, appear to play a key regulatory role in cell expansion, thereby serving critical functions in plant morphogenesis, development, and adaptation to stress. We have isolated a number of expansin genes from Petunia. Their ongoing functional analysis provides evidence for their involvement in cell wall functions, including cellulose metabolism, disruption of noncovalent cellulose/glycan bonds, and separation of the cell wall matrix during cell expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balestrini, R., Cosgrove, D.J. and Bonfante, P. (2005) Differential location of alpha-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus. Planta 220, 889–899.

    Article  CAS  PubMed  Google Scholar 

  • Belfield, E.J., Ruperti, B., Roberts, J.A. and McQueen-Mason, S. (2005) Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J. Exp. Bot. 56, 817–823.

    Article  CAS  PubMed  Google Scholar 

  • Brummel, D.A., Harpster, M.H. and Dunsmuir, P. (1999) Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol. Biol. 39, 161–169.

    Article  Google Scholar 

  • Chen, F. and Bradford, K.J. (2000) Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol. 124, 1265–1274.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H.T. and Cosgrove, D.J. (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci., USA 97, 9783–9788.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H.T. and Cosgrove, D.J. (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14, 3237–3253.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D., Lee, Y., Cho, H.T. and Kende, H. (2003) Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15, 1386–1398.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D., Cho, H.T. and Lee, Y. (2006) Expansins: Expanding importance in plant growth and development. Physiol. Plant. 126, 511–518.

    CAS  Google Scholar 

  • Civello, P.M., Powell, A.L., Sabehat, A. and Bennett, A.B. (1999) An expansin gene expressed in ripening strawberry fruit. Plant Physiol. 121, 1273–1279.

    Article  CAS  PubMed  Google Scholar 

  • Colmer, T.D., Peeters, A.J., Wagemaker, C.A., Vriezen, W.H., Ammerlaan, A. and Voesenek, L.A. (2004) Expression of α-expansin genes during root acclimations to O2 deficiency in Rumex palustris. Plant Cell 56, 423–437.

    CAS  Google Scholar 

  • Cosgrove, D.J., Bedinger, P. and Durachko, D.M. (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl. Acad. Sci., USA 94, 6559–6564.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D.J. (1999) Enzymes and other agents that enhance cell wall extensibility. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50, 391–417.

    Article  CAS  Google Scholar 

  • Cosgrove, D.J. (2000) Loosening of plant cell walls by expansin. Nature 407, 321–326.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D.J., Li, L.C., Cho, H.-T., Hoffmann-Benning, S., Moore, R.C. and Blecker, D. (2002) The growing world of expansins. Plant Cell Physiol. 43, 1436–1444.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D.J. (2005) Growth of the plant cell wall. Nature Reviews 6, 850–861.

    CAS  PubMed  Google Scholar 

  • Darley, C.P., Forrester, A.M. and McQueen-Mason, S.J. (2001) The molecular basis of plant cell wall expansion. Plant Mol. Biol. 47, 179–195.

    Article  CAS  PubMed  Google Scholar 

  • Fleming, A.J., McQueen-Mason, S., Mandel, T. and Kuhlemeier, C. (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276, 1415–1418.

    Article  CAS  Google Scholar 

  • Gerats, A.G., Huits, H., Vrijlandt, E., Marana, C., Souer, E. and Beld, M. (1990) Molecular characterization of a nonautonomous transposable element (dTph1) of Petunia. Plant Cell 2, 1121–1128.

    Article  CAS  PubMed  Google Scholar 

  • Giordano, W. and Hirsch, A.M. (2004) The expression of MaEXP1, a Melitotus alba expansin gene, is upregulated during the sweetclover-Sinorhizobium melitoti interaction. Mol. Plant Microbe Interact. 17, 613–622.

    Article  CAS  PubMed  Google Scholar 

  • Gookin, T.E., Hunter, D.A. and Reid, M.S. (2003) Temporal analysis of alpha and beta-expansin expression during floral opening and senescence. Plant Sci. 164, 769–781.

    Article  CAS  Google Scholar 

  • Gutierrez, C. (2005) Coupling cell proliferation and development in plants. Nature Cell Biol. 7, 535–541.

    Article  CAS  PubMed  Google Scholar 

  • Harmer, S.E., Orford, S.J. and Timmis, J.N. (2002) Characterisation of six alpha-expansin genes in Gossypium hirsutum (upland cotton). Mol. Genet. Genomics 268, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Hiwasa, K., Rose, J.K., Nakano, R., Inaba, A. and Kubo, Y. (2003) Differential expression of seven α-expansin genes during growth and ripening of pear fruit. Physiol. Plant. 117, 564–572.

    Article  CAS  PubMed  Google Scholar 

  • Im, K.H., Cosgrove, D.J. and Jones, A.M. (2000) Subcellular localization of expansin mRNA in xylem cells. Plant Physiol. 123, 463–470.

    Article  CAS  PubMed  Google Scholar 

  • Jones, L. and McQueen-Mason, S. (2004) A role of expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum. FEBS Lett. 559, 61–65.

    Article  CAS  PubMed  Google Scholar 

  • Kotilainen, M., Helariutta, Y., Mehto, M., Pöllänen, E., Albert, V.A., Elomaa, P. and Teeri, T.H. (1999) GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell 11, 1093–1104.

    Article  CAS  PubMed  Google Scholar 

  • Kudla, U., Qin, L., Milac, A., Kielak, A., Massen, C., Overmars, H., Popeijus, H., Roze, E., Petrescu, A., Smant, G., Bakker, J. and Helder, J. (2005) Origin, disruption and 3D-modeling of Gr-EXPB1, an expansin from the potato cyst nematode Globodera rostochiensis. FEBS Lett. 579, 2451–2457

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. and Kende, H. (2001) Expression of alpha-expansins is correlated with internodal elongation in deepwater rice. Plant Physiol. 127, 645–654.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y., Choi, D. and Kende, H. (2001) Expansins: Ever-expanding numbers and functions. Curr. Opin. Plant Biol. 4, 527–532.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. and Kende, H. (2002) Expression of alpha-expansin and expansin-like genes in deepwater rice. Plant Physiol. 130, 1396–1405.

    Article  CAS  PubMed  Google Scholar 

  • Link, B.M. and Cosgrove, D.J. (1998) Acid-growth response and alpha-expansins in suspension cultures of Bright Yellow 2 tobacco. Plant Physiol. 118, 907–916.

    Article  CAS  PubMed  Google Scholar 

  • Martin, C., Bhatt, K. and Baumann, K. (2001) Shaping in plant cells. Curr. Opin. Plant Biol. 4, 540–549.

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason, S., Durachko, D.M. and Cosgrove, D.J. (1992) Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4, 1425–1433.

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason, S.J. and Cosgrove, D.J. (1995) Expansin mode of action on cell walls: Analysis of wall hydrolysis, stress-relaxation, and binding. Plant Physiol. 107, 87–100.

    CAS  PubMed  Google Scholar 

  • McQueen-Mason, S.J. and Cosgrove, D.J. (2000) Disruption of hydrogen-bonding between plant-cell wall polymers by proteins that induce wall extension. Proc. Natl. Acad. Sci., USA 91, 6574–6578.

    Article  Google Scholar 

  • Meyerowitz, E.M. (1997) Genetic control of cell division pattern in developing plants. Cell 88, 299–308.

    Article  CAS  PubMed  Google Scholar 

  • Pezzotti, M., Feron, R. and Mariani, C. (2002) Pollination modulates expression of the PPAL gene, a pistil-specific beta-expansin. Plant Mol. Biol. 49, 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Pien, S., Wyzykowska, J., McQueen-Mason, S., Smart, C. and Fleming, A. (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc. Natl. Acad. Sci., USA 9, 11812–11817.

    Article  Google Scholar 

  • Powell, A.L., Kalamaki, M.S., Kurien, P.A., Gurrieri, S. and Bennett, A.B. (2003) Simultaneous transgenic suppression of LePG and LeEXP1 influences fruit texture and juice viscosity in a fresh market tomato variety. J. Agric. Food Chem. 51, 7450–7455.

    Article  CAS  PubMed  Google Scholar 

  • Reale, L., Porceddu, A., Lanfaloni, L., Moretti, C., Zenoni, S., Pezzotti, M., Romano, B. and Ferranti, F. (2002) Patterns of cell division and expansion in developing petals of Petunia hybrida. Sex. Plant Reprod. 15, 123–132.

    Article  Google Scholar 

  • Rose, J.K., Cosgrove, D.J., Albersheim, P., Darvill, A.G. and Bennett, A.B. (2000) Detection of expansin proteins and activity during tomato fruit ontogeny. Plant Physiol. 123, 1583–1592.

    Article  CAS  PubMed  Google Scholar 

  • Sampedro, J., Lee, Y., Carey, R.E., dePamphilis, C. and Cosgrove, D.J. (2005) Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family. Plant J. 44, 409–419.

    Article  CAS  PubMed  Google Scholar 

  • Smith, L.G. (2003) Cytoskeletal control of plant cell shape: Getting the fine points. Curr. Opin. Plant Biol. 6, 63–73.

    Article  PubMed  Google Scholar 

  • Trivedi, P.K. and Nath, P. (2004) MaExp1, an ethylene-induced expansin from ripening banana fruit. Plant Sci. 167, 1351–1358.

    Article  CAS  Google Scholar 

  • Twyman, R.M. (2003) Growth and development: Molecular biology of development. In: B. Thomas, D.J.Murphy and B. Murray (Eds.), Encyclopedia of Applied Plant Sciences. Elsevier Science, London, pp. 539–549.

    Google Scholar 

  • Vandenbussche, M., Zethof, J., Souer, E., Koes, R., Tornelli, G.B., Pezzotti, M., Ferrario, S., Angenent, G.S. and Gerats, T. (2003) Toward the analysis of the Petunia MADS box gene family by reverse and forward tranposon insertion mutagenesis approaches: B, C, and D floral organ identity function require SEPALLATA-like MADS box genes in Petunia. Plant Cell 15, 2680–2693.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Scali, M., Vignali, R., Milanesi, C., Petersen, A., Sari-Gorla, M. and Cresi, M. (2004) Male-sterile mutation alters Zea m 1 (beta-expansin 1) accumulation in a maize mutant. Sex. Plant Reprod. 17, 41–47.

    Article  CAS  Google Scholar 

  • Wu, Y., Thorne, E.T., Sharp, R.E. and Cosgrove, D.J. (2001) Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiol. 14, 3237–3253.

    Google Scholar 

  • Xu, B., Janson, J.C. and Sellos, D. (2001) Cloning and sequencing of molluscan endo-beta-1,4-glucanase gene from the blue mussel, Mytilus edulis. Eur. J. Biochem. 268, 3718–3727.

    Article  CAS  PubMed  Google Scholar 

  • Yennawar, N.H., Li, L.C., Dudzinski, D.M., Tabuchi, A. and Cosgrove, D.J. (2006) Crystal structure and activities of EXPB1 (Zea m1), a beta-expansin and group-1 allergen from maize. Proc. Natl. Acad. Sci., USA 103, 14664–14671.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, S., Wu, Y. and Cosgrove, D.J. (2001) A fungal endoglucanase with plant cell wall extension activity. Plant Physiol. 127, 324–333.

    Article  CAS  PubMed  Google Scholar 

  • Zenoni, S., Reale, L., Tornielli, G.B., Lanfaloni, L., Porceddu, A., Ferrarini, A., Moretti, C., Zamboni, A., Speghini, A., Ferranti, F. and Pezzotti, M. (2004) Downregulation of the Petunia hybrida α-expansin gene PhEXP1reduces the amount of crystalline cellulose in cell wall and leads to phenotypic changes in petal limbs. Plant Cell 16, 295–308.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Zenoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zenoni, S., Zamboni, A., Porceddu, A., Pezzotti, M. (2009). The Role of Expansins A in Petunia Development. In: Gerats, T., Strommer, J. (eds) Petunia. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84796-2_12

Download citation

Publish with us

Policies and ethics