Skip to main content

Multielectrode Mapping of the Heart

  • Chapter
Cardiac Bioelectric Therapy
  • 1232 Accesses

Multielectrode cardiac mapping has at least a 50-year history in cardiac research, and the development of this methodology has closely followed the technological advances in instrumentation and computing. The methodology has proven to be quite effective in characterizing potential distributions on both the body surface and the epicardial surface of the heart.1–4 However, the more challenging problem for multielectrode systems is the identification and display of cardiac activation or isochronal maps. In the earlier era of cardiac mapping, hardware limitations, particularly the speed of computer processing and digital data acquisition, were the major challenges for obtaining continuous data from a high number of recording channels. For the current generation of digital electronics and computers this is no longer a significant challenge. The analysis and interpretation of the data still pose a number of challenges, since in many cases, such as diseased myocardium or during complex tachyarrhythmias, the biophysical basis of conduction is not fully developed. For example, the use of contour-generation software often does not consider the actual nature of the underlying pathophysiology. Many standard interpolation algorithms will indeed create contours overlying scar tissue within infarcted regions. This is an inherent error.

A number of newer mapping approaches rely on mathematical models to create images based on data at some distance from the actual sources. In some cases these systems are proprietary and may have indeed conquered some long-standing problems. In other cases, because the systems produce “good looking” images that fit a preconceived model of activation, their underlying models are not challenged. This chapter focuses on the issues surrounding direct contact, multielectrode mapping approaches and will concentrate on the problems associated with producing activation maps, especially from regions surrounding and within infarct regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barr RC, Gallie TM, Spach MS. Automated production of contour maps for electro-physiology: I. Problem definition, solution strategy, and specification of geometric model. Comput Biomed Res 1980;13:142–153

    Article  PubMed  CAS  Google Scholar 

  2. Barr RC, Gallie TM, Spach MS. Automated production of contour maps for electro-physiology: III. Construction of contour maps. Comput Biomed Res 1980;13:171–191

    Article  PubMed  CAS  Google Scholar 

  3. Barr RC, Gallie TM, Spach MS. Automated production of contour maps for electrophys-iology: II. Triangulation, verification, and organization of the geometric model. Comput Biomed Res 1980;13:154–170

    Article  PubMed  CAS  Google Scholar 

  4. Monro DM. Interpolation methods for surface mapping. Comput Programs Biomed 1980;11:145–157

    Article  PubMed  CAS  Google Scholar 

  5. Berbari EJ, Lander P, Geselowitz DB, Scherlag BJ, Lazzara R. The methodology of cardiac mapping. In: Breithardt G, Borgreffe M, Shenasa M, eds. Cardiac Mapping. Armonk, NY: Futura; 1993:63–79

    Google Scholar 

  6. Sih H, Berbari EJ. The methodology of cardiac mapping. In: Breithardt G, Borgreffe M, Shenasa M, eds. Cardiac Mapping, 2nd edn. Armonk, NY: Futura; 2003:41–58

    Google Scholar 

  7. Biermann M, Shenasa M, Borggrefe M, Hindricks G, Haverkamp W, Breithardt G. The interpretation of cardiac electrograms. In: Breithardt G, Borgreffe M, Shenasa M, eds. Cardiac Mapping. Armonk, NY: Futura; 1993:11–34

    Google Scholar 

  8. Scherlag BJ, El-Sherif N, Hope R, Lazzara R. Characterization and localization of ventricular arrhythmias resulting from myocardial ischemia and infarction. Circ Res 1974;35:372–383

    PubMed  CAS  Google Scholar 

  9. Geselowitz DB, Smith S, Mowrey K, Berbari EJ. Model studies of extracellular electro-grams arising from an excitation wave propagating in a thin layer. IEEE Trans Biomed Eng 1991;38:526–531

    Article  PubMed  CAS  Google Scholar 

  10. Davis JC. Statistics and Data Analysis. New York: Wiley; 1986

    Google Scholar 

  11. Ideker RE, Smith WM, Blanchard SM, Reiser SL, Simpson EV, Wolf PD, Danieley ND. The assumptions of isochronal cardiac mapping. Pacing Clin Electrophysiol 1989;12:456–478

    Article  PubMed  CAS  Google Scholar 

  12. Ramachandran D, Berbari EJ, Lander P. Comparison of interpolation methods used in epicardial activation map. In: Computers in Cardiology. Los Alamitos, CA: IEEE Computer Society Press; 1993:129–136

    Google Scholar 

  13. Krige DG. Two dimensional weighted moving average trend surfaces for ore evaluation. J S Afr Inst Min Metall 1966;13:3815

    Google Scholar 

  14. Berbari EJ, Lander P, Geselowitz DB. A cardiac mapping system for identifying late potentials: correlation with signal averaged surface recordings. Comput Cardiol 1988:369–372

    Google Scholar 

  15. Berbari EJ, Lander P, Scherlag BJ, Lazzara R, Geselowitz DB. Ambiguities of epicardial mapping. J Electrocardiol 1992;24(Suppl):16–20

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Berbari, E.J., Sih, H. (2009). Multielectrode Mapping of the Heart. In: Efimov, I.R., Kroll, M.W., Tchou, P.J. (eds) Cardiac Bioelectric Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79403-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79403-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-79402-0

  • Online ISBN: 978-0-387-79403-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics