Skip to main content

Mechanisms of Isolated Cell Stimulation

  • Chapter
Cardiac Bioelectric Therapy
  • 1243 Accesses

It is a common practice in several fields of modern science to reduce a complex system to its simplest unit to gain fundamental insights into phenomena of interest. Field stimulation of cardiac cell is no different. Understanding the effects of an electrical shock at the simplest unit of cardiac tissue, an isolated cardiac cell, can lend valuable insights into mechanisms of field stimulation, especially those involved in phenomena such as fibrillation and defibrillation. These mechanisms have remained largely unresolved despite defibrillation having been applied clinically for over 60 years1 and become the mainstay of clinical medicine with the advent of implantable cardioverter-defibrillators (ICDs)2–4 and automatic external defibrillators (AED).5 Taking a reductionism approach, this chapter discusses the field-induced responses of single cardiac cells to electric field stimulation. Transmembrane voltage (V m) is widely acknowledged as the most important parameter during electric field stimulation of cardiac tissue, and hence we spend a significant portion of the chapter discussing the interaction between an externally applied field and isolated cell. Building on this we then discuss a slightly more complex system of a cell-pair. A coupled cell-pair is the simplest system in which the effects of intercellular gap junction on field-induced V m responses can be studied. Finally, we briefly discuss the effects of externally applied fields on intracellular Ca2+ dynamics since Ca2+is intimately linked to V m via voltage-dependent responsiveness of L-type Ca2+ channels.

New Therapies and Diagnostics, Medtronic, Inc., 8200 Coral Sea Street N.E., Minneapolis, MN 55112, USA, vinod.sharma@medtronic.com

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Beck CS. Resuscitation for cardiac standstill and ventricular fibrillation occurring during operation.Am J Surg1941;54:273–279

    Article  Google Scholar 

  2. Cesario DA, Dec GW. Implantable cardioverter-defibrillator therapy in clinical practice.J Am Coll Cardiol2006;47:1507–1517

    Article  PubMed  Google Scholar 

  3. DiMarco JP. Implantable cardioverter-defibrillators.N Engl J Med2003;349:1836–1847

    Article  PubMed  CAS  Google Scholar 

  4. Goldberger Z, Lampert R. Implantable cardioverter-defibrillators: expanding indications and technologies.JAMA2006;295:809–818

    Article  PubMed  CAS  Google Scholar 

  5. Marenco JP, Wang PJ, Link MS, Homoud MK, Estes NA III. Improving survival from sudden cardiac arrest: the role of the automated external defibrillator.JAMA2001;285:1193–1200

    Article  PubMed  CAS  Google Scholar 

  6. Klee M, Plonsey R. Stimulation of spheroidal cells — the role of cell shape.IEEE Trans Biomed Eng1976;23:347–354

    Article  PubMed  CAS  Google Scholar 

  7. Jeltsch E, Zimmerman U. Particles in a homogeneous field: a model for the electrical breakdown of living cells in a Coulter counter.Bioelectrochem Bioenerg1979;6:349–384

    Article  Google Scholar 

  8. Gross D, Loew LM, Webb WW. Optical imaging of cell membrane potential changes induced by applied electric fields.Biophys J1986;50:339–348

    PubMed  CAS  Google Scholar 

  9. Hibino M, Shigemori M, Itoh H, Nagayama K, Kinosita K Jr. Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential.Biophys J1991;59:209–220

    PubMed  CAS  Google Scholar 

  10. Ehrenberg B, Farkas DL, Fluhler EN, Lojewska Z, Loew LM. Membrane potential induced by external electric field pulses can be followed with a potentiomet-ric dye.Biophys J1987;51:833–837 [published erratum appears inBiophys. J1987 Jul;52(1):following 141]

    Article  PubMed  CAS  Google Scholar 

  11. Kwaku KF, Dillon SM. Shock-induced depolarization of refractory myocardium prevents wave-front propagation in defibrillation.Circ Res1996;79:957–973

    PubMed  CAS  Google Scholar 

  12. Watanabe T, Rautaharju PM, McDonald TF. Ventricular action potentials, ventricular extracellular potentials, and the ECG of guinea pig.Circ Res1985;57:362–373

    PubMed  CAS  Google Scholar 

  13. Cheng DKL, Tung L, Sobie EA. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells.Am J Physiol1999;277 (Heart Circ Physiol46):H351–H362

    Google Scholar 

  14. Knisley SB, Blitchington TF, Hill BC, Grant AO, Smith WM, Pilkington TC, Ideker RE. Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells.Circ Res1993;72:255–270

    PubMed  CAS  Google Scholar 

  15. Windisch H, Ahammer H, Schaffer P, Muller W, Platzer D. Optical multisite monitoring of cell excitation phenomena in isolated cardiomyocytes.Pflugers Arch1995;430:508–518

    Article  PubMed  CAS  Google Scholar 

  16. Sharma V, Tung L. Spatial heterogeneity of transmembrane potential responses of single guinea-pig cardiac cells during electric field stimulation.J Physiol2002;542:477–492

    Article  PubMed  CAS  Google Scholar 

  17. Rohr S, Kucera JP. Optical recording system based on a fiber optic image conduit: assessment of microscopic activation patterns in cardiac tissue.Biophys J1998;75:1062– 1075

    PubMed  CAS  Google Scholar 

  18. Windisch H, Ahammer H, Schaffer P, Muller W, Platzer D. Optical multisite monitoring of cell excitation phenomena in isolated cardiomyocytes.Pflugers Arch1995;430:508–518

    Article  PubMed  CAS  Google Scholar 

  19. Sharma V, Susil RC, Tung L. Paradoxical loss of excitation with high intensity pulses during electric field stimulation of single cardiac cells.Biophys J2005;88:3038–3049

    Article  PubMed  CAS  Google Scholar 

  20. Koning G, Veefkind AH, Schneider H. Cardiac damage caused by direct application of defibrillator shocks to isolated Langendorff-perfused rabbit heart.Am Heart J1980;100:473–482

    Article  PubMed  CAS  Google Scholar 

  21. O'Neill RJ, Tung L. Cell-attached patch clamp study of the electropermeabilization of amphibian cardiac cells.Biophys J1991;59:1028–1039

    PubMed  Google Scholar 

  22. Luo CH, Rudy Y. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction.Circ Res1991;68:1501–1526

    PubMed  CAS  Google Scholar 

  23. Puglisi JL, Wang F, Bers DM. Modeling the isolated cardiac myocyte.Prog Biophys Mol Biol2004;85:163–178

    Article  PubMed  CAS  Google Scholar 

  24. Tung L, Borderies JR. Analysis of electric field stimulation of single cardiac muscle cells.Biophys J1992;63:371–386

    PubMed  CAS  Google Scholar 

  25. Sharma V, Lu SN, Tung L. Decomposition of field-induced transmembrane potential responses of single cardiac cells.IEEE Trans Biomed Eng2002;49:1031–1037

    Article  PubMed  Google Scholar 

  26. Sharma V, Tung L. Transmembrane responses of single guinea pig ventricular cell to uniform electric field stimulus.J Cardiovasc Electrophysiol1999;10:1296

    Article  PubMed  CAS  Google Scholar 

  27. Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes.Circ Res1994;74:1071–1096

    PubMed  CAS  Google Scholar 

  28. Zeng J, Laurita KR, Rosenbaum DS, Rudy Y. Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization.Circ Res1995;77:140–152

    PubMed  CAS  Google Scholar 

  29. Sharma V, Tung L. Ionic currents involved in shock-induced nonlinear changes in transmembrane potential responses of single cardiac cells.Pflugers Arch2004;449:248– 256

    PubMed  CAS  Google Scholar 

  30. Cheek ER, Ideker RE, Fast VG. Nonlinear changes of transmembrane potential during defibrillation shocks: role of Ca2+current.Circ Res2000;87:453–459

    PubMed  CAS  Google Scholar 

  31. Ashihara T, Trayanova NA. Cell and tissue responses to electric shocks.Europace 2005;7:155–165

    Article  PubMed  Google Scholar 

  32. Neunlist M, Tung L. Optical recordings of ventricular excitability of frog heart by an extracellular stimulating point electrode.Pacing Clin Electrophysiol1994;17:1641–1654

    Article  PubMed  CAS  Google Scholar 

  33. Tung L, Neunlist M, Sobie EA. Near-field and far-field stimulation of cardiac muscle.Clin Appl Mod Imaging Technol II1994;2132:367–374

    Google Scholar 

  34. Neunlist M, Tung L. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation.Biophys J1995;68:2310–2322

    PubMed  CAS  Google Scholar 

  35. Gillis AM, Fast VG, Rohr S, Kleber AG. Spatial changes in transmembrane potential during extracellular electrical shocks in cultured monolayers of neonatal rat ventricular myocytes.Circ Res1996;79:676–690

    PubMed  CAS  Google Scholar 

  36. Zhou X, Knisley SB, Smith WM, Rollins D, Pollard AE, Idekar RE. Spatial changes in the transmembrane potential during extracellular electric stimulation.Circ Res1998;83:1003–1014

    PubMed  CAS  Google Scholar 

  37. Mowrey KA, Cheng Y, Tchou PJ, Efimov R. Kinetics of defibrillation shock-induced response: design implications for the optimal defibrillation waveform.Europace2002;4:27–39

    Article  PubMed  CAS  Google Scholar 

  38. Sharma V, Qu F, Nikolski VP, DeGroot P, Efimov IR. Direct measurements of membrane time constant during defibrillation strength shocks.Heart Rhythm2007;4:478–486

    Article  PubMed  Google Scholar 

  39. Fast VG, Rohr S, Ideker RE. Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes.Am J Physiol Heart Circ Physiol2000;278:H688–H697

    PubMed  CAS  Google Scholar 

  40. Susil RC, Sobie EA, Tung L. Separation between virtual sources modifies the response of cardiac tissue to field stimulation.J Cardiovasc Electrophysiol1999;10:715–727

    Article  PubMed  CAS  Google Scholar 

  41. Tung L, Kleber AG. Virtual sources associated with linear and curved strands of cardiac cells.Am J Physiol Heart Circ Physiol2000;279:H1579–H1590

    PubMed  CAS  Google Scholar 

  42. Roth BJ, Krassowska W. The induction of reentry in cardiac tissue. The missing link: how electric fields alter transmembrane potential.Chaos1998;8:204–220

    Article  PubMed  Google Scholar 

  43. Dorri F, Niederer PF, Redmann K, Lunkenheimer PP, Cryer CW, Anderson RH. An analysis of the spatial arrangement of the myocardial aggregates making up the wall of the left ventricle.Eur J Cardiothorac Surg2007;31:430–437

    Article  PubMed  Google Scholar 

  44. LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog.Am J Physiol1995;269:H571–H582

    Google Scholar 

  45. White JB, Walcott GP, Pollard AE, Ideker RE. Myocardial discontinuities: a substrate for producing virtual electrodes that directly excite the myocardium by shocks.Circulation1998;97:1738–1745

    PubMed  CAS  Google Scholar 

  46. Makowski L, Caspar DL, Phillips WC, Goodenough DA. Gap junction structures. II. Analysis of the X-ray diffraction data.J Cell Biol1977;74:629–645

    Article  PubMed  CAS  Google Scholar 

  47. White RL, Spray DC, Campos de Carvalho AC, Wittenberg BA, Bennett MV. Some electrical and pharmacological properties of gap junctions between adult ventricular myocytes.Am J Physiol1985;249:C447–455

    PubMed  CAS  Google Scholar 

  48. Weingart R, Maurer P. Action potential transfer in cell pairs isolated from adult rat and guinea pig ventricles.Circ Res1988;63:72–80

    PubMed  CAS  Google Scholar 

  49. Kieval RS, Spear JF, Moore EN. Gap junctional conductance in ventricular myocyte pairs isolated from postischemic rabbit myocardium.Circ Res1992;71:127–136

    PubMed  CAS  Google Scholar 

  50. Sharma V, Tung L. Theoretical and experimental study of sawtooth effect in isolated cardiac cell-pairs.J Cardiovasc Electrophysiol2001;12:1164–1173

    Article  PubMed  CAS  Google Scholar 

  51. Plonsey R, Barr RC. Inclusion of junction elements in a linear cardiac model through secondary sources: application to defibrillation.Med Biol Eng Comput1986;24:137–144

    Article  PubMed  CAS  Google Scholar 

  52. Plonsey R, Barr RC. Effect of junctional resistance on source-strength in a linear cable.Ann Biomed Eng1985;13:95–100

    Article  PubMed  CAS  Google Scholar 

  53. Plonsey R, Barr RC. Inclusion of junction elements in a linear cardiac model through secondary sources: application to defibrillation.Med Biol Eng Comput1986;24:137–144

    Article  PubMed  CAS  Google Scholar 

  54. Krinsky V, Pumir A. Models of defibrillation of cardiac tissue.Chaos1988;8:188–203

    Article  Google Scholar 

  55. Juhlin SP, Pormann JB. Dimensional comparison of the sawtooth pattern in transmem-brane potential.Comput Cardiol1994;413–416

    Google Scholar 

  56. Wittenberg BA, White RL, Ginzberg RD, Spray DC. Effect of calcium on the dissociation of the mature rat heart into individual and paired myocytes: electrical properties of cell pairs.Circ Res1986;59:143–150

    PubMed  CAS  Google Scholar 

  57. Roth BJ. Sawtooth effect: fact or fancy?J Cardiovasc Electrophysiol2001;12:1174–1175

    Article  PubMed  CAS  Google Scholar 

  58. Knisley SB, Smith WM, Ideker RE. Effect of field stimulation on cellular repolarization in rabbit myocardium. Implications for reentry induction.Circ Res1992;70:707–715

    PubMed  CAS  Google Scholar 

  59. Frazier DW, Wolf PD, Wharton JM, Tang AS, Smith WM, Ideker RE. Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium.J Clin Invest1989;83:1039–1052

    Article  PubMed  CAS  Google Scholar 

  60. Krassowska W, Kumar MS. The role of spatial interactions in creating the dispersion of transmembrane potential by premature electric shocks.Ann Biomed Eng1997;25:949– 963

    PubMed  CAS  Google Scholar 

  61. Ideker RE, Wolf PD, Tang AS.Mechanisms of DefibrillationSt. Louis: Mosby; 1994

    Google Scholar 

  62. Trayanova N, Skouibine K, Aguel F. The role of cardiac tissue structure in defibrillation.Chaos1998;8:221–233

    Article  PubMed  Google Scholar 

  63. Huang X, Sandusky GE, Zipes DP. Heterogeneous loss of connexin43 protein in ischemia dog hearts.J Cardiovasc Electrophysiol1999;10:79–91

    Article  PubMed  CAS  Google Scholar 

  64. Gray RA. What exactly are optically recorded “action potentials”?J Cardiovasc Electrophysiol1999;10:1463–1466

    Article  PubMed  CAS  Google Scholar 

  65. Rubart M. Two-photon microscopy of cells and tissue.Circ Res2004;95:1154–1166

    Article  PubMed  CAS  Google Scholar 

  66. Rohr S, Scholly DM, Kleber AG. Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization.Circ Res1991;68:114–130

    PubMed  CAS  Google Scholar 

  67. Berridge MJ, Bootman MD, Lipp P. Calcium — a life and death signal.Nature1998;395:645–648

    Article  PubMed  CAS  Google Scholar 

  68. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling.Nat Rev Mol Cell Biol2000;1:11–21

    Article  PubMed  CAS  Google Scholar 

  69. Beuckelmann DJ, Wier WG. Mechanism of release of calcium from sarcoplasmic retic-ulum of guinea- pig cardiac cells.J Physiol (Lond)1988;405:233–255

    CAS  Google Scholar 

  70. Fabiato A. Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell.J Gen Physiol1985;85:291–320

    Article  PubMed  CAS  Google Scholar 

  71. Callewaert G, Cleemann L, Morad M. Epinephrine enhances Ca2+current-regulated Ca2+release and Ca2+reuptake in rat ventricular myocytes.Proc Natl Acad Sci USA. 1988;85:2009–2013

    Article  PubMed  CAS  Google Scholar 

  72. Santana LF, Cheng H, Gomez AM, Cannell MB, Lederer WJ. Relation between the sarcolemmal Ca2+current and Ca2+sparks and local control theories for cardiac excitation-contraction coupling.Circ Res1996;78:166–171

    PubMed  CAS  Google Scholar 

  73. Cannell MB, Berlin JR, Lederer WJ. Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells.Science1987;238:1419–1423

    Article  PubMed  CAS  Google Scholar 

  74. Sipido KR, Wier WG. Flux of Ca2+across the sacroplasmic reticulum of guinea pig cardiac cells during excitation contraction coupling.J Physiol1991;435:605–630

    PubMed  CAS  Google Scholar 

  75. Sharma V, Tung L. Effects of uniform electric fields on intracellular calcium transients in single cardiac cells.Am J Physiol Heart Circ Physiol2002;282:H72–H79

    PubMed  CAS  Google Scholar 

  76. Simpson AW. Fluorescent measurement of [Ca2+]c: basic practical considerations.Methods Mol Biol2006;312:3–36

    PubMed  Google Scholar 

  77. Hadley RW, Lederer WJ. Ca2+and voltage inactivate Ca2+channels in guinea-pig ventricular myocytes through independent mechanisms.J Physiol1991;444:257–268

    PubMed  CAS  Google Scholar 

  78. White E, Terrar DA. Inactivation of Ca current during the action potential in guinea-pig ventricular myocytes.Exp Physiol1992;77:153–164

    PubMed  CAS  Google Scholar 

  79. Eckert R, Chad JE. Inactivation of Ca channels.Prog Biophys Mol Biol1984;44:215–267

    Article  PubMed  CAS  Google Scholar 

  80. Grantham CJ, Cannell MB. Ca2+influx during the cardiac action potential in guinea pig ventricular myocytes.Circ Res1996;79:194–200

    PubMed  CAS  Google Scholar 

  81. Langer GA, Peskoff A. Role of the diadic cleft in myocardial contractile control.Circulation1997;96:3761–3765

    PubMed  CAS  Google Scholar 

  82. Mukherjee R, Spinale FG. L-type calcium channel abundance and function with cardiac hypertrophy and failure: a review.J Mol Cell Cardiol1998;30:1899–1916

    Article  PubMed  CAS  Google Scholar 

  83. Raman V, Pollard AE, Fast VG. Shock-induced changes of Cai 2. +and Vm in myocyte cultures and computer model: dependence on the timing of shock application.Cardio-vasc Res2007;73:101–110

    Article  CAS  Google Scholar 

  84. Heida T. Electric field-induced effects on neuronal cell biology accompanying dielec-trophoretic trapping.Adv Anat Embryol Cell Biol2003;173:3–9

    Google Scholar 

  85. Lee RC, Zhang D, Hannig J. Biophysical injury mechanisms in electrical shock trauma.Annu Rev Biomed Eng2000;2:477–509

    Article  PubMed  CAS  Google Scholar 

  86. Trollet C, Bloquel C, Scherman D, Bigey P. Electrotransfer into skeletal muscle for protein expression.Curr Gene Ther2006;6:561–578

    Article  PubMed  CAS  Google Scholar 

  87. Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication.Annu Rev Biochem1996;65:475–502

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Sharma, V. (2009). Mechanisms of Isolated Cell Stimulation. In: Efimov, I.R., Kroll, M.W., Tchou, P.J. (eds) Cardiac Bioelectric Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79403-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79403-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-79402-0

  • Online ISBN: 978-0-387-79403-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics