Skip to main content

The Role of Animal Models in the Study of Epileptogenesis

  • Chapter
  • First Online:
Metabolic Encephalopathy

Abstract

Epileptogenesis is the process that leads to the development of epilepsy: the propensity to have recurrent, spontaneous seizures. During epileptogenesis, brain excitability increases due to molecular, cellular and network alterations. These changes are thought to be initiated by one or more brain insults which may be naturally occurring events such as traumatic brain injury, but can also be modeled in animals, using insults such as chemically induced status epilepticus (SE: a prolonged seizure). The study of epileptogenesis is critical for (a) identifying patients who are at risk of developing epilepsy and (b) targeting drugs that can modify the epileptogenic process and could therefore prevent the development of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, B, Sazgar, M, Osehobo, P, Van der Zee, CE, Diamond, J, Fahnestock, M, Racine, RJ. (1997) Nerve growth factor accelerates seizure development, enhances mossy fiber sprouting, and attenuates seizure-induced decreases in neuronal density in the kindling model of epilepsy. J Neurosci, 17:5288–5296.

    PubMed  CAS  Google Scholar 

  • Alexander, GM, Godwin, DW. (2006) Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Res, 71:1–22.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J. (1962) Are new neurons formed in the brains of adult mammals. Science, 135:1127–1128.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J, Das, GD. (1965) Post-natal origin of microneurones in the rat brain. Nature, 207:953–956.

    Article  PubMed  CAS  Google Scholar 

  • Andre, V, Ferrandon, A, Marescaux, C, Nehlig, A. (2001) Vigabatrin protects against hippocampal damage but is not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy. Epilepsy Res, 47:99–117.

    Article  PubMed  CAS  Google Scholar 

  • Arruda, F, Cendes, F, Andermann, F, Dubeau, F, Villemure, JG, Jones-Gotman, M, Poulin, N, Arnold, DL, Olivier, A. (1996) Mesial atrophy and outcome after amygdalohippocampectomy or temporal lobe removal. Ann Neurol, 40:446–450.

    Article  PubMed  CAS  Google Scholar 

  • Artemowicz, B, Sobaniec, W. (2005) Neuroprotection possibilities in epileptic children. Rocz Akad Med Bialymst, 50 (Suppl 1):91–95.

    PubMed  Google Scholar 

  • Arzimanoglou, A, Hirsch, E, Nehlig, A, Castelnau, P, Gressens, P, Pereira de Vasconcelos, A. (2002) Epilepsy and neuroprotection: an illustrated review. Epileptic Disord, 4:173–182.

    PubMed  Google Scholar 

  • Asprodini, EK, Rainnie, DG, Shinnick-Gallagher, P. (1992) Epileptogenesis reduces the sensitivity of presynaptic γ-aminobutyric acidB receptors on glutamatergic afferents in the amygdala. J Pharmacol Exp Ther, 262:1011–1021.

    PubMed  CAS  Google Scholar 

  • Babb, TL, Brown, WJ. (1986) Neuronal, dendritic, and vascular profiles of human temporal lobe epilepsy correlated with cellular physiology in vivo. Adv Neurol, 44:949–966.

    PubMed  CAS  Google Scholar 

  • Babb, TL, Brown, WJ, Pretorius, J, Davenport, C, Lieb, JP, Crandall, PH. (1984) Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia, 25:729–740.

    Article  PubMed  CAS  Google Scholar 

  • Baulac, S, Huberfeld, G, Gourfinkel-An, I, Mitropoulou, G, Beranger, A, Prud'homme, JF, Baulac, M, Brice, A, Bruzzone, R, LeGuern, E. (2001) First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat Genet, 28:46–48.

    PubMed  CAS  Google Scholar 

  • Behr, J, Heinemann, U, Mody, I. (2001) Kindling induces transient NMDA receptor-mediated facilitation of high-frequency input in the rat dentate gyrus. J Neurophysiol, 85:2195–2202.

    PubMed  CAS  Google Scholar 

  • Bekenstein, JW, Lothman, EW. (1993) Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. Science, 259:97–100.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari, Y. (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience, 14:375–403.

    Article  PubMed  CAS  Google Scholar 

  • Bengzon, J, Kokaia, Z, Elmer, E, Nanobashvili, A, Kokaia, M, Lindvall, O. (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci U S A, 94:10432–10437.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, C, Anderson, A, Becker, A, Poolos, NP, Beck, H, Johnston, D. (2004) Acquired dendritic channelopathy in temporal lobe epilepsy. Science, 305:532–535.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, C, Cossart, R, Hirsch, JC, Esclapez, M, Ben-Ari, Y. (2000) What is GABAergic inhibition? How is it modified in epilepsy. Epilepsia, 41 (Suppl 6):S90–S95.

    Article  PubMed  Google Scholar 

  • Bezzi, P, Gundersen, V, Galbete, JL, Seifert, G, Steinhauser, C, Pilati, E, Volterra, A. (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci, 7:613–620.

    Article  PubMed  CAS  Google Scholar 

  • Billinton, A, Baird, VH, Thom, M, Duncan, JS, Upton, N, Bowery, NG. (2001) GABA(B) receptor autoradiography in hippocampal sclerosis associated with human temporal lobe epilepsy. Br J Pharmacol, 132:475–480.

    Article  PubMed  CAS  Google Scholar 

  • Brandt, C, Gastens, AM, Sun, M, Hausknecht, M, Loscher, W. (2006) Treatment with valproate after status epilepticus: effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology, 51:789–804.

    Article  PubMed  CAS  Google Scholar 

  • Brandt, C, Glien, M, Potschka, H, Volk, H, Loscher, W. (2003) Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats. Epilepsy Res, 55:83–103.

    Article  PubMed  Google Scholar 

  • Brandt, C, Potschka, H, Loscher, W, Ebert, U. (2003) N-methyl-D-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy. Neuroscience, 118:727–740.

    Article  PubMed  CAS  Google Scholar 

  • Briellmann, RS, Newton, MR, Wellard, RM, Jackson, GD. (2001) Hippocampal sclerosis following brief generalized seizures in adulthood. Neurology, 57:315–317.

    Article  PubMed  CAS  Google Scholar 

  • Brooks-Kayal, AR, Shumate, MD, Jin, H, Rikhter, TY, Coulter, DA. (1998) Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med, 4:1166–1172.

    Article  PubMed  CAS  Google Scholar 

  • Buckmaster, PS, Dudek, FE. (1997a) Network properties of the dentate gyrus in epileptic rats with hilar neuron loss and granule cell axon reorganization. J Neurophysiol, 77:2685–2696.

    CAS  Google Scholar 

  • Buckmaster, PS, Dudek, FE. (1997b) Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol, 385:385–404.

    Article  CAS  Google Scholar 

  • Buckmaster, PS, Jongen-Relo, AL. (1999) Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. J Neurosci, 19:9519–9529.

    PubMed  CAS  Google Scholar 

  • Buckmaster, PS, Zhang, GF, Yamawaki, R. (2002) Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci, 22:6650–6658.

    PubMed  CAS  Google Scholar 

  • Buhl, EH, Otis, TS, Mody, I. (1996) Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science, 271:369–373.

    Article  PubMed  CAS  Google Scholar 

  • Cain, DP, Boon, F, Hargreaves, EL. (1992) Evidence for different neurochemical contributions to long-term potentiation and to kindling and kindling-induced potentiation: role of NMDA and urethane-sensitive mechanisms. Exp Neurol, 116:330–338.

    Article  PubMed  CAS  Google Scholar 

  • Capella, HM, Lemos, T. (2002) Effect on epileptogenesis of carbamazepine treatment during the silent period of the pilocarpine model of epilepsy. Epilepsia, 43(Suppl 5):110–111.

    Article  PubMed  Google Scholar 

  • Cartmell, J, Schoepp, DD. (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem, 75:889–907.

    Article  PubMed  CAS  Google Scholar 

  • Cavazos, JE, Das, I, Sutula, TP. (1994) Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures. J Neurosci, 14:3106–3121.

    PubMed  CAS  Google Scholar 

  • Chandler, KE, Princivalle, AP, Fabian-Fine, R, Bowery, NG, Kullmann, DM, Walker, MC. (2003) Plasticity of GABA(B) receptor-mediated heterosynaptic interactions at mossy fibers after status epilepticus. J Neurosci, 23:11382–11391.

    PubMed  CAS  Google Scholar 

  • Chen, K, Aradi, I, Thon, N, Eghbal-Ahmadi, M, Baram, TZ, Soltesz, I. (2001) Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat Med, 7:331–337.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, VR, Ballyk, BA, Hoo, KH, Mandelzys, A, Pellizzari, A, Bath, CP, Thomas, J, Sharpe, EF, Davies, CH, Ornstein, PL, Schoepp, DD, Kamboj, RK, Collingridge, GL, Lodge, D, Bleakman, D. (1997) A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature, 389:599–603.

    Article  PubMed  CAS  Google Scholar 

  • Clifford, DB, Olney, JW, Maniotis, A, Collins, RC, Zorumski, CF. (1987) The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience, 23:953–968.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, I, Navarro, V, Clemenceau, S, Baulac, M, Miles, R. (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science, 298:1418–1421.

    Article  PubMed  CAS  Google Scholar 

  • Cole, AJ, Dichter, M. (2002) Neuroprotection and antiepileptogenesis: overview, definitions, and context. Neurology, 59:S1–S2.

    Article  PubMed  Google Scholar 

  • Colwell, CS, Levine, MS. (1999) Metabotropic glutamate receptor modulation of excitotoxicity in the neostriatum: role of calcium channels. Brain Res, 833:234–241.

    Article  PubMed  CAS  Google Scholar 

  • D'Arcangelo, G, Tancredi, V, Avoli, M. (2001) Intrinsic optical signals and electrographic seizures in the rat limbic system. Neurobiol Dis, 8:993–1005.

    Article  PubMed  CAS  Google Scholar 

  • Davies, KG, Hermann, BP, Dohan, FCJ, Foley, KT, Bush, AJ, Wyler, AR. (1996) Relationship of hippocampal sclerosis to duration and age of onset of epilepsy, and childhood febrile seizures in temporal lobectomy patients. Epilepsy Res, 24:119–126.

    Article  PubMed  CAS  Google Scholar 

  • de Curtis, M, Avanzini, G. (2001) Interictal spikes in focal epileptogenesis. Prog Neurobiol, 63:541–567.

    Article  PubMed  CAS  Google Scholar 

  • De Fusco, M, Becchetti, A, Patrignani, A, Annesi, G, Gambardella, A, Quattrone, A, Ballabio, A, Wanke, E, Casari, G. (2000) The nicotinic receptor β 2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat Genet, 26:275–276.

    Article  PubMed  CAS  Google Scholar 

  • DeGiorgio, CM, Tomiyasu, U, Gott, PS, Treiman, DM. (1992) Hippocampal pyramidal cell loss in human status epilepticus. Epilepsia, 33:23–27.

    Article  PubMed  CAS  Google Scholar 

  • Delorenzo, RJ, Sun, DA, Deshpande, LS. (2005) Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther, 105:229–266.

    Article  PubMed  CAS  Google Scholar 

  • Denslow, MJ, Eid, T, Du, F, Schwarcz, R, Lothman, EW, Steward, O. (2001) Disruption of inhibition in area CA1 of the hippocampus in a rat model of temporal lobe epilepsy. J Neurophysiol, 86:2231–2245.

    PubMed  CAS  Google Scholar 

  • Dingledine, R, Borges, K, Bowie, D, Traynelis, SF. (1999) The glutamate receptor ion channels. Pharmacol Rev, 51:7–61.

    PubMed  CAS  Google Scholar 

  • Doherty, J, Dingledine, R. (2001) Reduced excitatory drive onto interneurons in the dentate gyrus after status epilepticus. J Neurosci, 21:2048–2057.

    PubMed  CAS  Google Scholar 

  • Doi, T, Ueda, Y, Tokumaru, J, Mitsuyama, Y, Willmore, LJ. (2001) Sequential changes in AMPA and NMDA protein levels during Fe(3 + )-induced epileptogenesis. Brain Res Mol Brain Res, 92:107–114.

    Article  PubMed  CAS  Google Scholar 

  • Draguhn, A, Traub, RD, Schmitz, D, Jefferys, JG. (1998) Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394:189–192.

    Article  PubMed  CAS  Google Scholar 

  • Ebert, U, Brandt, C, Loscher, W. (2002) Delayed sclerosis, neuroprotection, and limbic epileptogenesis after status epilepticus in the rat. Epilepsia, 43(Suppl 5):86–95.

    Article  PubMed  Google Scholar 

  • Ellerkmann, RK, Remy, S, Chen, J, Sochivko, D, Elger, CE, Urban, BW, Becker, A, Beck, H. (2003) Molecular and functional changes in voltage-dependent Na( + ) channels following pilocarpine-induced status epilepticus in rat dentate granule cells. Neuroscience, 119:323–333.

    Article  PubMed  CAS  Google Scholar 

  • Elmer, E, Kokaia, M, Kokaia, Z, Ferencz, I, Lindvall, O. (1996) Delayed kindling development after rapidly recurring seizures: relation to mossy fiber sprouting and neurotrophin, GAP-43 and dynorphin gene expression. Brain Res, 712:19–34.

    Article  PubMed  CAS  Google Scholar 

  • Engel, JJ. (2006) Report of the ILAE classification core group. Epilepsia, 47:1558–1568.

    Article  PubMed  Google Scholar 

  • Esclapez, M, Hirsch, JC, Khazipov, R, Ben-Ari, Y, Bernard, C. (1997) Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy. Proc Natl Acad Sci USA, 94:12151–12156.

    Article  PubMed  CAS  Google Scholar 

  • Eunson, LH, Rea, R, Zuberi, SM, Youroukos, S, Panayiotopoulos, CP, Liguori, R, Avoni, P, McWilliam, RC, Stephenson, JB, Hanna, MG, Kullmann, DM, Spauschus, A. (2000) Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann Neurol, 48:647–656.

    Article  PubMed  CAS  Google Scholar 

  • Faber, DS, Korn, H. (1989) Electrical field effects: their relevance in central neural networks. Physiol Rev, 69:821–863.

    PubMed  CAS  Google Scholar 

  • Fish, DR, Spencer, SS. (1995) Clinical correlations: MRI and EEG. Magn Reson Imaging, 13:1113–1117.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, A, Wang, X, Cock, HR, Thom, M, Patsalos, PN, Walker, MC. (2004) Synergism between topiramate and budipine in refractory status epilepticus in the rat. Epilepsia, 45:1300–1307.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, PD, Sperber, EF, Moshe, SL. (1998) Hippocampal sclerosis revisited. Brain Dev, 20:563–573.

    Article  PubMed  CAS  Google Scholar 

  • Frotscher, M, Soriano, E, Misgeld, U. (1994) Divergence of hippocampal mossy fibers. Synapse, 16:148–160.

    Article  PubMed  CAS  Google Scholar 

  • Gage, FH. (2002) Neurogenesis in the adult brain. J Neurosci, 22:612–613.

    PubMed  CAS  Google Scholar 

  • Gajda, Z, Gyengesi, E, Hermesz, E, Ali, KS, Szente, M. (2003) Involvement of gap junctions in the manifestation and control of the duration of seizures in rats in vivo. Epilepsia, 44:1596–1600.

    Article  PubMed  CAS  Google Scholar 

  • Gajda, Z, Szupera, Z, Blazso, G, Szente, M. (2005) Quinine, a blocker of neuronal cx36 channels, suppresses seizure activity in rat neocortex in vivo. Epilepsia, 46:1581–1591.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner, M. (2005) Genetics of idiopathic generalized epilepsies. Epilepsia, 46(Suppl 9):15–20.

    Article  PubMed  CAS  Google Scholar 

  • Ghai, RS, Bikson, M, Durand, DM. (2000) Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J Neurophysiol, 84:274–280.

    PubMed  CAS  Google Scholar 

  • Gibbs, JWr, Shumate, MD, Coulter, DA. (1997) Differential epilepsy-associated alterations in postsynaptic GABA(A) receptor function in dentate granule and CA1 neurons. J Neurophysiol, 77:1924–1938.

    PubMed  CAS  Google Scholar 

  • Goddard, GV. (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature, 214:1020–1021.

    Article  PubMed  CAS  Google Scholar 

  • Gray, WP, Sundstrom, LE. (1998) Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res, 790:52–59.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, YK, Veerendra Kumar, MH, Srivastava, AK. (2003) Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav, 74:579–585.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, R. (2005) The dual glutamatergic-GABAergic phenotype of hippocampal granule cells. Trends Neurosci, 28:297–303.

    Article  PubMed  CAS  Google Scholar 

  • Haas, KZ, Sperber, EF, Moshe, SL, Stanton, PK. (1996) Kainic acid-induced seizures enhance dentate gyrus inhibition by downregulation of GABA(B) receptors. J Neurosci, 16:4250–4260.

    PubMed  CAS  Google Scholar 

  • Halassa, MM, Fellin, T, Haydon, PG. (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med, 13:54–63.

    Article  PubMed  CAS  Google Scholar 

  • Hattiangady, B, Rao, MS, Shetty, AK. (2004) Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis, 17:473–490.

    Article  PubMed  CAS  Google Scholar 

  • Haug, K, Warnstedt, M, Alekov, AK, Sander, T, Ramirez, A, Poser, B, Maljevic, S, Hebeisen, S, Kubisch, C, Rebstock, J, Horvath, S, Hallmann, K, Dullinger, JS, Rau, B, Haverkamp, F, Beyenburg, S, Schulz, H, Janz, D, Giese, B, Muller-Newen, G, Propping, P, Elger, CE, Fahlke, C, Lerche, H, Heils, A. (2003) Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet, 33:527–532.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann, U, Beck, H, Dreier, JP, Ficker, E, Stabel, J, Zhang, CL. (1992) The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res Suppl, 7:273–280.

    PubMed  CAS  Google Scholar 

  • Henshall, DC, Simon, RP. (2005) Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab, 25:1557–1572.

    Article  PubMed  CAS  Google Scholar 

  • Henze, DA, Urban, NN, Barrionuevo, G. (2000) The multifarious hippocampal mossy fiber pathway: a review. Neuroscience, 98:407–427.

    Article  PubMed  CAS  Google Scholar 

  • Hesdorffer, DC, Logroscino, G, Cascino, G, Annegers, JF, Hauser, WA. (1998) Risk of unprovoked seizure after acute symptomatic seizure: effect of status epilepticus. Ann Neurol, 44:908–912.

    Article  PubMed  CAS  Google Scholar 

  • Hochman, DW, Baraban, SC, Owens, JW, Schwartzkroin, PA. (1995) Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity. Science, 270:99–102.

    Article  PubMed  CAS  Google Scholar 

  • Hochman, DW, D'Ambrosio, R, Janigro, D, Schwartzkroin, PA. (1999) Extracellular chloride and the maintenance of spontaneous epileptiform activity in rat hippocampal slices. J Neurophysiol, 81:49–59.

    PubMed  CAS  Google Scholar 

  • Houser, CR, Esclapez, M. (1996) Vulnerability and plasticity of the GABA system in the pilocarpine model of spontaneous recurrent seizures. Epilepsy Res, 26:207–218.

    Article  PubMed  CAS  Google Scholar 

  • Jefferys, JG, Evans, BJ, Hughes, SA, Williams, SF. (1992) Neuropathology of the chronic epileptic syndrome induced by intrahippocampal tetanus toxin in rat: preservation of pyramidal cells and incidence of dark cells. Neuropathol Appl Neurobiol, 18:53–70.

    Article  PubMed  CAS  Google Scholar 

  • Jefferys, JG, Traub, RD. (1998) 'Dormant' inhibitory neurons: do they exist and what is their functional impact. Epilepsy Res, 32:104–113.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, MS, Yaari, Y. (1997) Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J Neurophysiol, 77:1224–1233.

    PubMed  CAS  Google Scholar 

  • Jouvenceau, A, Eunson, LH, Spauschus, A, Ramesh, V, Zuberi, SM, Kullmann, DM, Hanna, MG. (2001) Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet, 358:801–807.

    Article  PubMed  CAS  Google Scholar 

  • Jung, KH, Chu, K, Kim, M, Jeong, SW, Song, YM, Lee, ST, Kim, JY, Lee, SK, Roh, JK. (2004) Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Eur J Neurosci, 19:3219–3226.

    Article  PubMed  Google Scholar 

  • Khalilov, I, Hirsch, J, Cossart, R, Ben-Ari, Y. (2002) Paradoxical anti-epileptic effects of a GluR5 agonist of kainate receptors. J Neurophysiol, 88:523–527.

    PubMed  CAS  Google Scholar 

  • Khurgel, M, Switzer, RCr, Teskey, GC, Spiller, AE, Racine, RJ, Ivy, GO. (1995) Activation of astrocytes during epileptogenesis in the absence of neuronal degeneration. Neurobiol Dis, 2:23–35.

    Article  PubMed  CAS  Google Scholar 

  • Kodama, M, Yamada, N, Sato, K, Kitamura, Y, Koyama, F, Sato, T, Morimoto, K, Kuroda, S. (1999) Effects of YM90K, a selective AMPA receptor antagonist, on amygdala-kindling and long-term hippocampal potentiation in the rat. Eur J Pharmacol, 374:11–19.

    Article  PubMed  CAS  Google Scholar 

  • Kohling, R, Gladwell, SJ, Bracci, E, Vreugdenhil, M, Jefferys, JG. (2001) Prolonged epileptiform bursting induced by 0-Mg(2 + ) in rat hippocampal slices depends on gap junctional coupling. Neuroscience, 105:579–587.

    Article  PubMed  CAS  Google Scholar 

  • Kokaia, Z, Kokaia, M. (2001) Changes in GABA(B) receptor immunoreactivity after recurrent seizures in rats. Neurosci Lett, 315:85–88.

    Article  PubMed  CAS  Google Scholar 

  • Konnerth, A, Heinemann, U, Yaari, Y. (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. I. Development of seizurelike activity in low extracellular calcium. J Neurophysiol, 56:409–423.

    PubMed  CAS  Google Scholar 

  • Kotti, T, Riekkinen, PJS, Miettinen, R. (1997) Characterization of target cells for aberrant mossy fiber collaterals in the dentate gyrus of epileptic rat. Exp Neurol, 146:323–330.

    Article  PubMed  CAS  Google Scholar 

  • Kunz, WS. (2002) The role of mitochondria in epileptogenesis. Curr Opin Neurol, 15:179–184.

    Article  PubMed  Google Scholar 

  • Lauri, SE, Bortolotto, ZA, Bleakman, D, Ornstein, PL, Lodge, D, Isaac, JT, Collingridge, GL. (2001) A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. Neuron, 32:697–709.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, DV. (1999) Febrile convulsions and mesial temporal sclerosis. Curr Opin Neurol, 12:197–201.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman, DN, Mody, I. (1999) Properties of single NMDA receptor channels in human dentate gyrus granule cells. J Physiol, 518:55–70.

    PubMed  CAS  Google Scholar 

  • Liou, AK, Clark, RS, Henshall, DC, Yin, XM, Chen, J. (2003) To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol, 69:103–142.

    Article  PubMed  CAS  Google Scholar 

  • Longo, BM, Mello, LE. (1997) Blockade of pilocarpine- or kainate-induced mossy fiber sprouting by cycloheximide does not prevent subsequent epileptogenesis in rats. Neurosci Lett, 226:163–166.

    Article  PubMed  CAS  Google Scholar 

  • Loscher, W. (2002) Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res, 50:105–123.

    Article  PubMed  CAS  Google Scholar 

  • Lothman, EW, Bertram, EH, Kapur, J, Stringer, JL. (1990) Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus. Epilepsy Res, 6:110–118.

    Article  PubMed  CAS  Google Scholar 

  • Lothman, EW, Stringer, JL, Bertram, EH. (1992) The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res Suppl, 7:301–313.

    PubMed  CAS  Google Scholar 

  • Lux, HD, Heinemann, U, Dietzel, I. (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv Neurol, 44:619–639.

    PubMed  CAS  Google Scholar 

  • Mangan, PS, Rempe, DA, Lothman, EW. (1995) Changes in inhibitory neurotransmission in the CA1 region and dentate gyrus in a chronic model of temporal lobe epilepsy. J Neurophysiol, 74:829–840.

    PubMed  CAS  Google Scholar 

  • Mathern, GW, Pretorius, JK, Mendoza, D, Lozada, A, Leite, JP, Chimelli, L, Fried, I, Sakamoto, AC, Assirati, JA, Adelson, PD. (1998) Increased hippocampal AMPA and NMDA receptor subunit immunoreactivity in temporal lobe epilepsy patients. J Neuropathol Exp Neurol, 57:615–634.

    Article  PubMed  CAS  Google Scholar 

  • Mazarati, AM, Wasterlain, CG, Sankar, R, Shin, D. (1998) Self-sustaining status epilepticus after brief electrical stimulation of the perforant path. Brain Res, 801:251–253.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, DC, Nathanson, D, Edson, N. (1982) A new model of partial status epilepticus based on kindling. Brain Res, 250:53–63.

    Article  PubMed  CAS  Google Scholar 

  • McNamara, JO, Bonhaus, W, Shin, C. The kindling model of epilepsy. In: Schwartzkroin PA, editor. Epilepsy: models, mechanisms, and concepts. Cambridge: Cambridge University Press, 1993:21–47

    Google Scholar 

  • Mellanby, J, George, G, Robinson, A, Thompson, P. (1977) Epileptiform syndrome in rats produced by injecting tetanus toxin into the hippocampus. J Neurol Neurosurg Psychiatry, 40:404–414.

    Article  PubMed  CAS  Google Scholar 

  • Miles, R, Wong, RK. (1983) Single neurones can initiate synchronized population discharge in the hippocampus. Nature, 306:371–373.

    Article  PubMed  CAS  Google Scholar 

  • Munoz, A, Arellano, JI, DeFelipe, J. (2002) GABABR1 receptor protein expression in human mesial temporal cortex: changes in temporal lobe epilepsy. J Comp Neurol, 449:166–179.

    Article  PubMed  CAS  Google Scholar 

  • Munoz, A, Mendez, P, DeFelipe, J, Alvarez-Leefmans, FJ. (2007) Cation-chloride cotransporters and GABA-ergic innervation in the human epileptic hippocampus. Epilepsia, 48:663–673.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, RA, Malenka, RC. (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature, 377:115–118.

    Article  PubMed  CAS  Google Scholar 

  • Norman, RM. (1964) The neuropathology of status epilepticus. Med Sci Law, 14:46–51.

    Google Scholar 

  • Notenboom, RG, Hampson, DR, Jansen, GH, van Rijen, PC, van Veelen, CW, van Nieuwenhuizen, O, de Graan, PN. (2006) Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. Brain, 129:96–107.

    Article  PubMed  Google Scholar 

  • Nusser, Z, Hajos, N, Somogyi, P, Mody, I. (1998) Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature, 395:172–177.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki, MM, Evenson, DA, Nadler, JV. (1995) Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biocytin. J Comp Neurol, 352:515–534.

    Article  PubMed  CAS  Google Scholar 

  • Orkand, RK, Nicholls, JG, Kuffler, SW. (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol, 29:788–806.

    Google Scholar 

  • Otis, TS, De Koninck, Y, Mody, I. (1994) Lasting potentiation of inhibition is associated with an increased number of γ-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. Proc Natl Acad Sci USA, 91:7698–7702.

    Article  PubMed  CAS  Google Scholar 

  • Penfield, W. (1927) The mechanism of cicatricial contraction in the brain. Brain, 50:499–517.

    Article  Google Scholar 

  • Perez Velazquez, JL, Carlen, PL. (2000) Gap junctions, synchrony and seizures. Trends Neurosci, 23:68–74.

    Article  PubMed  CAS  Google Scholar 

  • Pinel, JP, Rovner, LI. (1978) Experimental epileptogenesis: kindling-induced epilepsy in rats. Exp Neurol, 58:190–202.

    Article  PubMed  CAS  Google Scholar 

  • Pitkänen, A. (2002) Drug-mediated neuroprotection and antiepileptogenesis: animal data. Neurology, 59(9Suppl5):S27–33.

    Article  PubMed  CAS  Google Scholar 

  • Pitkanen, A, Kharatishvili, I, Narkilahti, S, Lukasiuk, K, Nissinen, J. (2005) Administration of diazepam during status epilepticus reduces development and severity of epilepsy in rat. Epilepsy Res, 63:27–42.

    Article  PubMed  CAS  Google Scholar 

  • Pitkanen, A, Narkilahti, S, Bezvenyuk, Z, Haapalinna, A, Nissinen, J. (2004) Atipamezole, an α(2)-adrenoceptor antagonist, has disease modifying effects on epileptogenesis in rats. Epilepsy Res, 61:119–140.

    Article  PubMed  CAS  Google Scholar 

  • Porter, BE, Cui, XN, Brooks-Kayal, AR. (2006) Status epilepticus differentially alters AMPA and kainate receptor subunit expression in mature and immature dentate granule neurons. Eur J Neurosci, 23:2857–2863.

    Article  PubMed  Google Scholar 

  • Prasad, A, Williamson, JM, Bertram, EH. (2002) Phenobarbital and MK-801, but not phenytoin, improve the long-term outcome of status epilepticus. Ann Neurol, 51:175–181.

    Article  PubMed  CAS  Google Scholar 

  • Prince, HK, Conn, PJ, Blackstone, CD, Huganir, RL, Levey, AI. (1995) Down-regulation of AMPA receptor subunit GluR2 in amygdaloid kindling. J Neurochem, 64:462–465.

    Article  PubMed  CAS  Google Scholar 

  • Princivalle, AP, Duncan, JS, Thom, M, Bowery, NG. (2002) Studies of GABA(B) receptors labelled with [(3)H]-CGP62349 in hippocampus resected from patients with temporal lobe epilepsy. Br J Pharmacol, 136:1099–1106.

    Article  PubMed  CAS  Google Scholar 

  • Rashid, K, Van der Zee, CE, Ross, GM, Chapman, CA, Stanisz, J, Riopelle, RJ, Racine, RJ, Fahnestock, M. (1995) A nerve growth factor peptide retards seizure development and inhibits neuronal sprouting in a rat model of epilepsy. Proc Natl Acad Sci USA, 92:9495–9499.

    Article  PubMed  CAS  Google Scholar 

  • Ratzliff, AH, Howard, AL, Santhakumar, V, Osapay, I, Soltesz, I. (2004) Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: implications for epileptogenesis. J Neurosci, 24:2259–2269.

    Article  PubMed  CAS  Google Scholar 

  • Raza, M, Blair, RE, Sombati, S, Carter, DS, Deshpande, LS, DeLorenzo, RJ. (2004) Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis cause acquired epilepsy. Proc Natl Acad Sci USA, 101:17522–17527.

    Article  PubMed  CAS  Google Scholar 

  • Riedel, G, Reymann, KG. (1996) Metabotropic glutamate receptors in hippocampal long-term potentiation and learning and memory. Acta Physiol Scand, 157:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Rigoulot, MA, Koning, E, Ferrandon, A, Nehlig, A. (2004) Neuroprotective properties of topiramate in the lithium-pilocarpine model of epilepsy. J Pharmacol Exp Ther, 308:787–795.

    Article  PubMed  CAS  Google Scholar 

  • Santhakumar, V, Bender, R, Frotscher, M, Ross, ST, Hollrigel, GS, Toth, Z, Soltesz, I. (2000) Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the 'irritable mossy cell' hypothesis. J Physiol, 524(Pt 1):117–134.

    Article  PubMed  CAS  Google Scholar 

  • Sato, M, Racine, RJ, McIntyre, DC. (1990) Kindling: basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol, 76:459–472.

    Article  PubMed  CAS  Google Scholar 

  • Scharfman, HE, Goodman, JH, Sollas, AL. (2000) Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci, 20:6144–6158.

    PubMed  CAS  Google Scholar 

  • Scharfman, HE, Gray, WP. (2007) Relevance of seizure-induced neurogenesis in animal models of epilepsy to the etiology of temporal lobe epilepsy. Epilepsia, 48(Suppl 2):33–41.

    Article  PubMed  Google Scholar 

  • Scheibel, ME, Crandall, PH, Scheibel, AB. (1974) The hippocampal-dentate complex in temporal lobe epilepsy. A Golgi study. Epilepsia, 15:55–80.

    Article  CAS  Google Scholar 

  • Scimemi, A, Schorge, S, Kullmann, DM, Walker, MC. (2006) Epileptogenesis is associated with enhanced glutamatergic transmission in the perforant path. J Neurophysiol, 95:1213–1220.

    Article  PubMed  CAS  Google Scholar 

  • Seifert, G, Huttmann, K, Schramm, J, Steinhauser, C. (2004) Enhanced relative expression of glutamate receptor 1 flip AMPA receptor subunits in hippocampal astrocytes of epilepsy patients with Ammon's horn sclerosis. J Neurosci, 24:1996–2003.

    Article  PubMed  CAS  Google Scholar 

  • Shah, MM, Anderson, AE, Leung, V, Lin, X, Johnston, D. (2004) Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons. Neuron, 44:495–508.

    Article  PubMed  CAS  Google Scholar 

  • Simonato, M, Molteni, R, Bregola, G, Muzzolini, A, Piffanelli, M, Beani, L, Racagni, G, Riva, M. (1998) Different patterns of induction of FGF-2, FGF-1 and BDNF mRNAs during kindling epileptogenesis in the rat. Eur J Neurosci, 10:955–963.

    Article  PubMed  CAS  Google Scholar 

  • Sloviter, RS. (1983) “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies. Brain Res Bull, 10:675–697.

    Article  PubMed  CAS  Google Scholar 

  • Sloviter, RS. (1987) Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science, 235:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Sloviter, RS. (1991a) Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA-mediated mechanisms that regulate excitability in vivo. Hippocampus, 1:31–40.

    Article  CAS  Google Scholar 

  • Sloviter, RS. (1991b) Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus, 1:41–66.

    Article  CAS  Google Scholar 

  • Sloviter, RS. (1992) Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neurosci Lett, 137:91–96.

    Article  PubMed  CAS  Google Scholar 

  • Sloviter, RS, Damiano, BP. (1981) Sustained electrical stimulation of the perforant path duplicates kainate-induced electrophysiological effects and hippocampal damage in rats. Neurosci Lett, 24:279–284.

    Article  PubMed  CAS  Google Scholar 

  • Stefan, H, Lopes da Silva, FH, Loscher, W, Schmidt, D, Perucca, E, Brodie, MJ, Boon, PA, Theodore, WH, Moshe, SL. (2006) Epileptogenesis and rational therapeutic strategies. Acta Neurol Scand, 113:139–155.

    Article  PubMed  CAS  Google Scholar 

  • Strasser, A, O'Connor, L, Dixit, VM. (2000) Apoptosis signaling. Annu Rev Biochem, 69:217–245.

    Article  PubMed  CAS  Google Scholar 

  • Su, H, Sochivko, D, Becker, A, Chen, J, Jiang, Y, Yaari, Y, Beck, H. (2002) Upregulation of a T-type Ca2 + channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci, 22:3645–3655.

    PubMed  CAS  Google Scholar 

  • Sutula, TP, Pitkanen, A. (2001) More evidence for seizure-induced neuron loss: is hippocampal sclerosis both cause and effect of epilepsy. Neurology, 57:169–170.

    Article  PubMed  CAS  Google Scholar 

  • Tarkka, R, Paakko, E, Pyhtinen, J, Uhari, M, Rantala, H. (2003) Febrile seizures and mesial temporal sclerosis: no association in a long-term follow-up study. Neurology, 60:215–218.

    Article  PubMed  CAS  Google Scholar 

  • Tauck, DL, Nadler, JV. (1985) Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci, 5:1016–1022.

    PubMed  CAS  Google Scholar 

  • Theodore, WH, Gaillard, WD. (1999) Association between hippocampal volume and epilepsy duration. Ann Neurol, 46:800.

    Article  PubMed  CAS  Google Scholar 

  • Tian, GF, Azmi, H, Takano, T, Xu, Q, Peng, W, Lin, J, Oberheim, N, Lou, N, Wang, X, Zielke, HR, Kang, J, Nedergaard, M. (2005) An astrocytic basis of epilepsy. Nat Med, 11:973–981.

    PubMed  CAS  Google Scholar 

  • Traub, RD, Pais, I, Bibbig, A, LeBeau, FE, Buhl, EH, Hormuzdi, SG, Monyer, H, Whittington, MA. (2003) Contrasting roles of axonal. (pyramidal cell) and dendritic. (interneuron) electrical coupling in the generation of neuronal network oscillations. Proc Natl Acad Sci USA, 100:1370–1374.

    Article  PubMed  CAS  Google Scholar 

  • Tuff, LP, Racine, RJ, Adamec, R. (1983) The effects of kindling on GABA-mediated inhibition in the dentate gyrus of the rat. I. Paired-pulse depression. Brain Res, 277:79–90.

    CAS  Google Scholar 

  • Turski, L, Ikonomidou, C, Turski, WA, Bortolotto, ZA, Cavalheiro, EA. (1989) Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse, 3:154–171.

    Article  PubMed  CAS  Google Scholar 

  • Turski, WA, Cavalheiro, EA, Schwarz, M, Czuczwar, SJ, Kleinrok, Z, Turski, L. (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res, 9:315–335.

    Article  PubMed  CAS  Google Scholar 

  • Tuunanen, J, Pitkanen, A. (2000) Do seizures cause neuronal damage in rat amygdala kindling. Epilepsy Res, 39:171–176.

    Article  PubMed  CAS  Google Scholar 

  • Upton, N, Stratton, S. (2003) Recent developments from genetic mouse models of seizures. Curr Opin Pharmacol, 3:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Van Paesschen, W, Duncan, JS, Stevens, JM, Connelly, A. (1998) Longitudinal quantitative hippocampal magnetic resonance imaging study of adults with newly diagnosed partial seizures: one-year follow-up results. Epilepsia, 39:633–639.

    Article  PubMed  CAS  Google Scholar 

  • van Praag, H, Schinder, AF, Christie, BR, Toni, N, Palmer, TD, Gage, FH. (2002) Functional neurogenesis in the adult hippocampus. Nature, 415:1030–1034.

    Article  PubMed  CAS  Google Scholar 

  • Vignes, M, Collingridge, GL. (1997) The synaptic activation of kainate receptors. Nature, 388:179–182.

    Article  PubMed  CAS  Google Scholar 

  • Vissel, B, Royle, GA, Christie, BR, Schiffer, HH, Ghetti, A, Tritto, T, Perez-Otano, I, Radcliffe, RA, Seamans, J, Sejnowski, T, Wehner, JM, Collins, AC, O'Gorman, S, Heinemann, SF. (2001) The role of RNA editing of kainate receptors in synaptic plasticity and seizures. Neuron, 29:217–227.

    Article  PubMed  CAS  Google Scholar 

  • Vollmar, W, Gloger, J, Berger, E, Kortenbruck, G, Kohling, R, Speckmann, EJ, Musshoff, U. (2004) RNA editing. (R/G site) and flip-flop splicing of the AMPA receptor subunit GluR2 in nervous tissue of epilepsy patients. Neurobiol Dis, 15:371–379.

    Article  PubMed  CAS  Google Scholar 

  • Walker, MC, Perry, H, Scaravilli, F, Patsalos, PN, Shorvon, SD, Jefferys, JG. (1999) Halothane as a neuroprotectant during constant stimulation of the perforant path. Epilepsia, 40:359–364.

    Article  PubMed  CAS  Google Scholar 

  • Walker, MC, White, HS, Sander, JW. (2002) Disease modification in partial epilepsy. Brain, 125:1937–1950.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, RH, Scheffer, IE, Barnett, S, Richards, M, Dibbens, L, Desai, RR, Lerman-Sagie, T, Lev, D, Mazarib, A, Brand, N, Ben-Zeev, B, Goikhman, I, Singh, R, Kremmidiotis, G, Gardner, A, Sutherland, GR, George, ALJ, Mulley, JC, Berkovic, SF. (2001) Neuronal sodium-channel α1-subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet, 68:859–865.

    Article  PubMed  CAS  Google Scholar 

  • Wasterlain, CG, Shirasaka, Y, Mazarati, AM, Spigelman, I. (1996) Chronic epilepsy with damage restricted to the hippocampus: possible mechanisms. Epilepsy Res, 26:255–265.

    Article  PubMed  CAS  Google Scholar 

  • Williams, PA, Wuarin, JP, Dou, P, Ferraro, DJ, Dudek, FE. (2002) Reassessment of the effects of cycloheximide on mossy fiber sprouting and epileptogenesis in the pilocarpine model of temporal lobe epilepsy. J Neurophysiol, 88:2075–2087.

    PubMed  Google Scholar 

  • Wong, RK, Bianchi, R, Chuang, SC, Merlin, LR. (2005) Group I mGluR-induced epileptogenesis: distinct and overlapping roles of mGluR1 and mGluR5 and implications for antiepileptic drug design. Epilepsy Curr, 5:63–68.

    Article  PubMed  Google Scholar 

  • Wu, C, Leung, LS. (1997) Partial hippocampal kindling decreases efficacy of presynaptic GABAB autoreceptors in CA1. J Neurosci, 17:9261–9269.

    PubMed  CAS  Google Scholar 

  • Zhang, N, Houser, CR. (1999) Ultrastructural localization of dynorphin in the dentate gyrus in human temporal lobe epilepsy: a study of reorganized mossy fiber synapses. J Comp Neurol, 405:472–490.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, LJ, Chen, Z, Zhang, LS, Xu, SJ, Xu, AJ, Luo, JH. (2004) Spatiotemporal changes of the N-methyl-D-aspartate receptor subunit levels in rats with pentylenetetrazole-induced seizures. Neurosci Lett, 356:53–56

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chandler, K., Chang, PS., Walker, M. (2009). The Role of Animal Models in the Study of Epileptogenesis. In: McCandless, D. (eds) Metabolic Encephalopathy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79112-8_6

Download citation

Publish with us

Policies and ethics