Skip to main content

Breeching Epithelial Barriers – Physiochemical Factors Impacting Nanomaterial Translocation and Toxicity

  • Chapter
  • First Online:
Safety of Nanoparticles

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

With the surging nanotechnology industry, the likelihood of intentional consumer and unintended worker-related skin and lung exposures to various types of nanomaterials is assured. From existing literature, there is clear evidence that some nanomaterials can passively breech epithelial barriers. For skin, mechanical flexing can facilitate penetration of large micron-sized particles and, for both skin and lung, the health status will affect barrier function. Nanoparticle toxicology is, however, an emerging field and inconsistencies in the published literature exist. Inconsistencies should be anticipated as there is currently no standardized set of tests by which nanoparticle toxicity can be determined. Therefore, the question of nanomaterial toxicity resulting from unintended epithelial permeation remains open. In vitro cytotoxicity studies clearly indicate that nanomaterials are toxic to skin and lung cells under certain conditions. The relevance of these results is difficult to extrapolate, as there is a presumption of epithelial permeation. This chapter discusses what is known and what is not known about physiochemical factors impacting nano material translocation and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson IY, Bowden DH (1975) Derivation of type I epithelium from type II cells in the developing rat lung. Lab Invest 32(6):736–745.

    CAS  Google Scholar 

  • Åkerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. PNAS 99:12617–12621.

    Google Scholar 

  • Alvarez-Roma R, Naika A, Kaliaa YN, Guy RH, Fessi H (2004) Skin penetration and distribution of polymeric nanoparticles. J Control Release 99(1):53–62.

    Google Scholar 

  • Anderson JM (2001) Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci 16:126–130.

    CAS  Google Scholar 

  • Ahsan F, Rivas IP, Khan MA, Suárez-Torres AI (2002) Targeting to macrophages: role of physicochemical properties of particulate carriers – liposomes and microspheres – on the phagocytosis by macrophages. J Control Release 79:29–40.

    CAS  Google Scholar 

  • Auffan M, Decome L, Rose J, Orsiere T, De Meo M, Brisis V, Chaneac C, Olivi L, Berge-Lefranc J-L, Botta A, Wiesner MR, Bottero J-Y (2006) In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ Sci Technol 40(14):4367–4373.

    CAS  Google Scholar 

  • Badea I, Wettig S, Verrall R, Foldvari, M (2007) Topical non-invasive gene delivery using gemini nanoparticles in interferon-?-deficient mice. Eur J Pharm Biopharm 65:414–422.

    CAS  Google Scholar 

  • Bateson TF, Schwartz J (2004) Who is sensitive to the effects of particulate air pollution on mortality? A case-crossover analysis of effect modifiers. Epidemiology 15(2):143–149.

    Google Scholar 

  • Bailey M.R. (1994) The new ICRP model for the respiratory tract. Radiation Protection Dosimetry 53:107–114.

    CAS  Google Scholar 

  • Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA (2007) Penetration of metallic nanoparticles in human full-thickness skin, J Invest Dermatol 127(7):1701–1712.

    CAS  Google Scholar 

  • Barbero AM, Frasch HF (2006) Transcellular route of diffusion through stratum corneum: results from finite element models, J Pharm Sci 95(10):2186–2194.

    CAS  Google Scholar 

  • Baron PA, Maynard AD, Foley M (2002) Evaluation of aerosol release during the handling of unrefined single walled carbon nanotube material. National Institute for Occupational Safety and Health, Cincinnati (OH), NIOSH report:DART-02-191.

    Google Scholar 

  • Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, Hext PM, Warheit DB, Everitt JI. (2002) Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide. Toxicol Sci 70:86–97.

    CAS  Google Scholar 

  • Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI (2004) Pulmonary Responses of Rats, Mice, and Hamsters to Subchronic Inhalation of Ultrafine Titanium Dioxide Particles. Toxicol Sci 77:347–357.

    CAS  Google Scholar 

  • Berry CC, Wells S, Charles S, Curtis AS (2003) Dextran or albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24(25):4551–4557.

    CAS  Google Scholar 

  • Berry CC, Charles S, Wells S, Dalby MJ, Curtis AS (2004) The influence of transferrin stabilized magnetic nanoparticles on human dermal fibroblasts in culture. Int J Pharm 269(1): 211–225.

    CAS  Google Scholar 

  • Bodian D, Howe HA (1941a) Experimental studies on intraneural spread of poliomyelitis virus, Bull Johns Hopkins Hosp 68:248–267.

    Google Scholar 

  • Bodian D, Howe HA (1941b) The rate of progression of poliomyelitis virus in nerves. Bull Johns Hopkins Hosp 69:79–85.

    Google Scholar 

  • The Royal Society and the Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society.

    Google Scholar 

  • Brouxhon S, Kyranides S, O’Banion MK, Johnson R, Pearce DA, MGrath K, Erdle B, Scott G, Schneider S, VanBuskirk J, Pentland AP (2007) Sequential downregulation of E-cadherin with squamous cell carcinoma progression: loss of E-cadherin via a prostaglandin E2–EP2 dependent mechanism. Cancer Res (in Press).

    Google Scholar 

  • Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB, Kleinman M (2005) Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology 26:133–140.

    CAS  Google Scholar 

  • Carter JM, Corson N, Driscoll KE, Elder A, Finkelstein JN, Harkema JR, Gelein R, Wade- Mercer P, Nguyen K, Oberdörster G (2006) A comparative dose-related response of several key pro- and antiinflammatory mediators in the lungs of rats, mice, and hamsters after subchronic inhalation of carbon black. J Occup Environ Med 48:1265–1278.

    CAS  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. PNAS 104:2050–2055.

    CAS  Google Scholar 

  • Chang E, Yu WW, Colvin VL, Drezek RJ (2005) Quantifying the influence of surface coatings on quantum dot uptake in cells. J Biomed Nanotechnol 1:397–401.

    CAS  Google Scholar 

  • Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R (2006) Evaluation of QDot cytotoxicity based on intracellular uptake. Small 2(12):1412–1417.

    Google Scholar 

  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nature biotechnology 25:1165–1170.

    Google Scholar 

  • Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles. Skin Pharmacol Physiol 20(3):148–154.

    CAS  Google Scholar 

  • Cui Z, Mumper RJ (2001) Chitosan-based nanoparticles for topical genetic immunization. J Control Release 75(3):409–419.

    CAS  Google Scholar 

  • Curtis J, Greenberg M, Kester J, Phillips S, Krieger G (2006) Nanotechnology and nanotoxicology: a primer for clinicians. Toxicol Rev 25(4):245–260.

    CAS  Google Scholar 

  • Dayan N (2005) Pathways for skin penetration. Cosmetics & Toiletries Magazine 120(6):67–76.

    Google Scholar 

  • DeLorenzo, AJD (1970) The olfactory neuron and the blood-brain barrier. In: Wolstenholme GEW, Knight J (eds) Taste and smell in vertebrates. J&A Churchill, London, pp 151–176.

    Google Scholar 

  • Dick IP, Scott RC (1992) Pig ear skin as an in-vitro model for human skin permeability. J Pharm Pharmacol 44(8):640–645.

    CAS  Google Scholar 

  • Ding L, Stilwell J, Zhang T, Omeed Elboudwarej O, Huijian Jiang H, Selegue JP, Cooke PA, Gray JW, Chen FF (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotube and nano-onions on human skin fibroblast. Nano Lett 5(12):2448–2464.

    CAS  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of Qdots. Nano Lett 4(1): 11–18.

    CAS  Google Scholar 

  • Destree C, Ghijsen J, Nagy JB (2007) Preparation of organic nanoparticles using microemulsions: their potential use in transdermal delivery. Langmuir 23(4):1965–1973.

    CAS  Google Scholar 

  • Eedy DJ (1996) Carbon-fibre-induced airborne irritant contact dermatitis. Contact Dermatitis 35(6):362–363.

    CAS  Google Scholar 

  • Elder A, Gelein R, Finkelstein J, Phipps R, Frampton M, Utell M, Topham D, Kittelson D, Watts W, Hopke P, Jeong C-H, Kim E, Liu W, Zhao W, Zhou L, Vincent R, Kumarathasan P, Oberdörster G (2004) On-road exposure to highway aerosols. 2. Exposures of aged, compromised rats. Inhal Toxicol 16:41–53.

    CAS  Google Scholar 

  • Elder A, Gelein R, Finkelstein JN, Driscoll KE, Harkema J, Oberdörster G (2005) Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation, and histopathology. Toxicol Sci 88:614–629.

    CAS  Google Scholar 

  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect 114:1172–1178.

    CAS  Google Scholar 

  • Elder A, Couderc J-P, Gelein R, Eberly S, Cox C, Xia X, Zareba W, Hopke P, Watts W, Kittelson D, Frampton M, Utell M, Oberdörster G (2007) Effects of on-road highway aerosol exposures on autonomic responses in aged, spontaneously hypertensive rats. Inhal Toxicol 19: 1–12.

    CAS  Google Scholar 

  • Elder ACP, Gelein R, Finkelstein JN, Cox C, Oberdörster G (2000) The pulmonary inflammatory response to inhaled ultrafine particles is modified by age, ozone exposure, and bacterial toxin. Inhal Toxicol 12:227–246.

    CAS  Google Scholar 

  • Fien SM, Oseroff AR (2007) Photodynamic therapy for non-melanoma skin cancer. J Natl Compr Cancer Network 5(5):531–540.

    CAS  Google Scholar 

  • Fischer HC, Liu L, Pang KS, Chan WCW (2006) Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv Funct Mater 16(10): 1299–1305.

    CAS  Google Scholar 

  • Frampton MW, Utell MJ, Zareba W, Oberdörster G, Cox C, Huang LS, Morrow PE, Lee FE, Chalupa D, Frasier LM, Speers DM, Stewart JC (2004) Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Res Rep Health Eff Inst 126:1–47.

    Google Scholar 

  • Gamer AO, Leibold E, van Ravenzwaay B (2006) The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol in Vitro 20(3):301–307.

    CAS  Google Scholar 

  • Gbadamosi HJ, Hunter AC, Moghimi SM (2002) PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Lett, 532(3):338–344.

    CAS  Google Scholar 

  • Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM (1995) The aged epidermal permeability barrier: structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest 95:2281–2290.

    CAS  Google Scholar 

  • Ghitescu L, Fixman A (1984) Surface charge distribution on the endothelial cells of liver sinusoids. J Cell Biol, 99:639–647.

    CAS  Google Scholar 

  • Gopee NV, Roberts DW, Webb P, Cozart CR, Siitonen PH, Warbritton AR, Yu WW, Colvin VL, Walker NJ, Howard PC (2007) Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci 98(1):249–257.

    CAS  Google Scholar 

  • Grenha A, Seijo B, Remuñán-López C (2005) Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci 25(4–5):427–437.

    CAS  Google Scholar 

  • Griese M (1999) Pulmonary surfactant in health and human lung diseases: state of the art. Eur Resp J 13:1455–1476.

    CAS  Google Scholar 

  • Gupta AK, Gupta, M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26:1563–1573.

    Google Scholar 

  • Hahn FF, Newton GJ, Bryant PL (1977) In vitro phagocytosis of respirable-sized monodisperse particles by alveolar macrophages. In Sanders CL, Schneider RP, Dagle GE, Ragen HA (eds) Pulmonary macrophages and epithelial cells, vol 43. Technical Information Center, Energy Research and Development Administration, Oak Ridge, pp 424–435.

    Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health 114(2):165–172.

    Google Scholar 

  • Holmberg SB, Forssell-Aronsson E, Gretarsdottir J, Jacobsson L, Rippe B, Hafstrom L (1990) Vascular clearance by the reticuloendothelial system--measurements using two different-sized albumin colloids. Scand J Clin Lab Invest 50(8):865–871.

    CAS  Google Scholar 

  • Honeywell-Nguyen PL, Gooris GS, Bouwstra JA (2004) Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from the vesicle formulation into human skin in vivo. JID 123:902–910.

    CAS  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169.

    CAS  Google Scholar 

  • Hostynek JJ, Maibach HI (2004) Copper hypersensitivity: dermatologic aspects. Dermatol Ther 17(4):328–333.

    Google Scholar 

  • Hostynek JJ, Dreher F, Nakada T, Schwindt D, Anigbogu A, Maibach HI (2001) Human stratum corneum adsorption of nickel salts. Investigation of depth profiles by tape stripping in vivo. Acta Derm Venereol Suppl 212:11–18.

    Google Scholar 

  • Hueber F, Wepierre J, Schaefer H (1992) Role of transepidermal and transfollicular routes in percutaneous absorption of hydrocortisone and testosterone: in vivo study in the hairless rat. Skin Pharmacol 5:99–107.

    CAS  Google Scholar 

  • International Committee on Radiological Protection (1994) Human Respiratory Tract Model for Radiological Protection. A Report of Committee 2 of the ICRP, Pergamon Press, Oxford.

    Google Scholar 

  • Illel B (1997) Formulation for transfollicular drug administration: some recent advances. Crit Rev Ther Drug Carrier Syst 14(3):207–219.

    CAS  Google Scholar 

  • Ipe BI, Lehnig M, Niemeyer CM (2005) On the generation of free radical species from quantum dots. Small 1:706–709.

    CAS  Google Scholar 

  • Javier AM, Kreft O, Alberola AP, Kirchner C, Zebli B, Susha AS, Horn E, Kempter S, Skirtach AG, Rogach AL, Rädler J, Sukhorukov GB, Benoit M, Parak WJ (2006) Combined atomic force microscopy and optical microscopy measurements as a method to investigate particle uptake by cells. Small 2(3):394–400.

    Google Scholar 

  • Jiang JS, Chu AW, Lu ZF, Pan MH, Che DF, Shou XJ (2007) Ultraviolet B-induced alterations of the skin barrier and epidermal calcium gradient. Exp Dermatol 16:985–992.

    Google Scholar 

  • Junquiera CL, Carneiro J, Kelley RO (1992) Basic histology, 7th edn. Appleton and Lange, Englewood Cliffs NJ.

    Google Scholar 

  • Kim MK, Choi SY, Byun HJ, Huh CH, Park KC, Patel RA, Shinn AH, Youn SW (2006) Comparison of sebum secretion, skin type, pH in humans with and without acne, Arch Dermatol Res 298:113–119.

    Google Scholar 

  • Kim KJ, Malik AB (2003) Protein transport across the lung epithelial barrier. Am J Physiol 284(2):L247–L259.

    CAS  Google Scholar 

  • Kittelson DB, Watts WF, Johnson JP, Remerowski ML, Ische EE, Oberdörster G, Gelein RM, Elder A, Hopke PK (2004) On-road exposure to highway aerosols. 1. Aerosol and gas measurements. Inhal Toxicol 16:31–39.

    CAS  Google Scholar 

  • Klein J (2007) Probing the interactions of proteins and nanoparticles, PNAS 104:2029–2030.

    CAS  Google Scholar 

  • Kodavanti UP, Schladweiler MC, Ledbetter AD, Hauser R, Christiani DC, McGee J, Richards JR, Costa DL (2002) Temporal association between pulmonary and systemic effects of particulate matter in healthy and cardiovascular compromised rats. J Toxicol Environ Health 65(20): 1545–1569.

    CAS  Google Scholar 

  • Kohli AK, Aplar HO (2004) Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm 275:13–17.

    CAS  Google Scholar 

  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health 65:1513–1530.

    CAS  Google Scholar 

  • Künzli N, Jerret M, Mack WJ, Beckerman B, LaBree L, Gilliland F, Thomas D, Peters J, Hodis HN (2005) Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 113:201–206.

    Google Scholar 

  • Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W (1999) Penetration of titanium dioxide microparticles in the Horny Layer and the Follicular Orifice. Skin Pharmacol Appl Skin Physiol 12:247–256.

    CAS  Google Scholar 

  • Lademann J, Richter H, Schaefer UF, Blume-Peytavi U, Teichmann A, Otberg N, Sterry W (2006a) Hair follicles – A long-term reservoir for drug delivery. Skin Pharmacol Physiol 19(4): 232–236.

    CAS  Google Scholar 

  • Lademann J, Ilgevicius A, Zurbau O, Liess HD, Schanzer S, Weigmann HJ, Antoniou C, Pelchrzim RV, Sterry W (2006b) Penetration studies of topically applied substances: optical determination of the amount of stratum corneum removed by tape stripping. J Biomed Optics 11(5): 054026–1 to 054026–6.

    Google Scholar 

  • Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, Weiss B, Schaefer UF, Lehr CM, Wepf R, Sterry W (2007) Nanoparticles – An efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm, 66:159–164.

    CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134.

    Google Scholar 

  • Lambert AL, Mangum JB, DeLorme MP, Everitt JI (2003) Ultrafine carbon black particles enhance respiratory syncytial virus-induced airway reactivity, pulmonary inflammation, and chemokine expression. Toxicol Sci 72:339–346.

    CAS  Google Scholar 

  • Lee S, Lee J, Choi YW (2007) Skin permeation enhancement of ascorbyl palmitate by liposomal hydrogel (lipogel) formulation and electrical assistance. Biol & Pharm Bull 40(2):393–396.

    Google Scholar 

  • Li L, Hamilton RF Jr, Kirichenko A, Holian A (1996) 4-hydroxynonenal-induced cell death in murine alveolar macrophages. Toxicol Appl Pharmacol 139:135–143.

    CAS  Google Scholar 

  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460.

    CAS  Google Scholar 

  • Li JG, Li WX, Xu JY, Cai XO, Liu RL, Li YJ, Zhao QF, Li QN (2007) Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 22(4):415–421.

    CAS  Google Scholar 

  • Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X (2006) Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 328(2):191–195.

    Google Scholar 

  • Lovric J, Cho SJ, Winnik FM, Maysinger D (2005a) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234.

    CAS  Google Scholar 

  • Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005b) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385.

    Google Scholar 

  • Lutz O, Meraihi Z, Mura JL, Frey A, Riess GH, Bach AC (1989) Fat emulsion particle size: influence on the clearance rate and the tissue lipolytic activity. Am J Clin Nutr 50(6):1370–1381.

    CAS  Google Scholar 

  • Marro D, Guy RH, Delgado-Charro MB (2001) Characterizaton of the iontophoretic permselectivity properties of human and pig skin. J Control Release 70:213–217.

    CAS  Google Scholar 

  • Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single walled carbon nanotube induces oxidative stress and activates nuclear transcription factor kappa B in human keratinocyte cells. Nano Lett 5(9):1676–1684.

    CAS  Google Scholar 

  • Meidan VM, Bonner MC, Michniak BB (2006) Transfollicular drug delivery – Is it a reality? Int J Pharm, 306(1–2):1–14.

    Google Scholar 

  • Menon GK, Feingold KR, Elias PM (1992) Lamellar body secretory response to barrier disruption. J Invest Dermatol, 98:279–289.

    CAS  Google Scholar 

  • Mortensen L, Pentland AP, Oberdorstor G, DeLouise LA (2007) In vivo study of quantum dots penetration through skin, 2007 preliminary data.

    Google Scholar 

  • Monterio-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005a) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384.

    Google Scholar 

  • Monteiro-Riviere NA, Inman AO, Wang YY, Nemanich RJ (2005b) Surfactant effects on carbon nanotube interactions with human keratinocytes. Nanomed: Nanotechnol, Biol, Med 1: 293–299.

    CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353.

    CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(3):622–627.

    CAS  Google Scholar 

  • Ng AW, Bidani A, Heming TA (2004) Innate host defense of the lung: effects of lung-lining fluid pH. Lung 182:297–317.

    Google Scholar 

  • Nemmar A, Hoylaerts M, Hoet PHM, Dinsdale D, Smith T, Xu H, Vermylen J, Nemery, B (2002) Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med 166(7):598–1004.

    Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062.

    Google Scholar 

  • Oberdörster G, Ferin J, Lehnert B (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102:173–179.

    Google Scholar 

  • Oberdörster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder ACP (2000) Acute pulmonary effects of ultrafine particles in rats and mice. Health Effects Institute, Cambridge, Report 96, pp. 1–74.

    Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health 65:1531–1543.

    Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445.

    Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 113(71):823–839.

    Google Scholar 

  • Pentland AP, Schoggins JW, Scott GA, Khan KNM, Rujing Han R (1999) Reduction of UV-induced skin tumors in hairless mice by selective COX-2 inhibition. Carcinogenesis 20(10):1939–1944.

    CAS  Google Scholar 

  • Parisel C, Saffar L, Gattegno L, Andre V, Abdul-Malak N, Perrier E, Letourneur D (2003) Interactions of heparin with human skin cells: binding, location, and transdermal penetration. Journal of Biomedical Materials Research Part A 67(2):517–523.

    Google Scholar 

  • Pernodet N, Fang XH, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, Ulman A, Rafailovich M (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2(6):766–773.

    CAS  Google Scholar 

  • Peters A, Wichmann H-E, Tuch T, Heinrich J, Heyder J (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383.

    CAS  Google Scholar 

  • Phalen RF, Yeh H, Praasad SB (1995) Morphology of the respiratory tract. In: McClellan RO, Henderson RF (eds) Concepts in inhalation toxicology, 2nd edn. Taylor and Francis, Washington, D.C. pp 129–149.

    Google Scholar 

  • Proksch E, Brasch J (1997) Influence of epidermal permeability barrier disruption and Langerhans’ cell density on allergic contact dermatitis. Acta Derm Venereol 108, 73.

    Google Scholar 

  • Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74.

    CAS  Google Scholar 

  • Reid L, Meyrick B, Antony VB, Chang LY, Crapo JD, Reynolds HY (2005) The mysterious pulmonary brush cell: a cell in search of a function. Am J Respir Crit Care Med. 172(1):136–139.

    Google Scholar 

  • Ross MH, Romrell LJ (1989) Histology: a text Williams and Wilkins, Baltimore, MD and atlas, 2nd edn.

    Google Scholar 

  • Rouse JG, Yang J, Barron AR, Monteiro-Riviere NA (2006) Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol in vitro 20(8):1313–1320.

    CAS  Google Scholar 

  • Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monterio-Riviere NA (2007) Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett 7(1):155–160.

    CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Montero-Riviere NA (2006) Penetration of intact skin by QDots with diverse physicochemical properties. Toxicol Sci 91(1):159–165.

    CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007a) Variables influencing interactions of untargeted QDots with skin cell and identification of biochemical modulators. Nano Lett 7(5):1344–1348.

    CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Montero-Riviere NA (2007b) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127(1):143–153.

    CAS  Google Scholar 

  • Salleh A. (2004) Nano sunblock safety under scrutiny, News in Science ABC Science Online. http://www.abc.net.au/science/news/stories/s1165709.htm

  • Sayes CM, Fortner J, Lyon D et al (2004) The differential cytotoxicity of water soluble fullerenes. Nano Lett 4:1881–1887.

    CAS  Google Scholar 

  • Sayes CM, Gobin AM, Ausman KD et al (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595.

    CAS  Google Scholar 

  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006a) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1): 174–185.

    CAS  Google Scholar 

  • Sayes CM, Liang F, Hudson JL, Mendeza J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WL, Ausman KD, Colvin VL (2006b) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142.

    CAS  Google Scholar 

  • Scheuch G, Kohlhaeufl MJ, Brand P, Siekmeier R (2006) Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv Drug Deliv Rev 58:996–1008.

    CAS  Google Scholar 

  • Schulz J, Hohenberg, H, Pflücker F, G ärtner E, Will T, Pfeiffer S, Wepf R, Wendel V, Gers-Barlag H, Wittern, KP (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev 54(Suppl. 1):S157–S163.

    Google Scholar 

  • Schwarz VA, Klein SD, Hornung RÂ, Knochenmuss R, Wyss P, Fink D, Haller U, Walt H (2001) Skin protection for photosensitized patients. Lasers Surg Med 29:252–259.

    CAS  Google Scholar 

  • Schlesinger RB (1995) Deposition and clearance of inhaled particles. In: McClellan RO, Henderson RF (eds) Concepts in inhalation toxicology, 2nd edn. Taylor and Francis, Washington, D.C. pp 191–224.

    Google Scholar 

  • Shim J, Seok KH, Park WS, Han SH, Kim J, Chang IS (2004) Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J Control Release 97(3):477–484.

    CAS  Google Scholar 

  • Shvedova AA, Castranova V, Kisin ER (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66(20):1909–1926.

    CAS  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku B, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol 289:L698–L708.

    CAS  Google Scholar 

  • Silva VM, Corson N, Elder A, Oberdörster G (2005) The rat ear vein model for investigating in vivo thrombogenicity of ultrafine particles (UFP). Toxicol Sci 85:983–989.

    CAS  Google Scholar 

  • Sincai M, Argherie D, Ganga D, Bica D, Vekas L (2007) Application of some magnetic nanocompounds in the protection against sun radiation. J Magn Magn Mater 311(1):363–366.

    CAS  Google Scholar 

  • Smith AM, Gao X, Nie S (2004) Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80(3):377–385.

    CAS  Google Scholar 

  • Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047.

    CAS  Google Scholar 

  • Tan M, Commens CA, Burnett L, Snitch PJ (1996) A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas J Dermatol 37(4):185–187.

    CAS  Google Scholar 

  • Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20(7):1202–1212.

    CAS  Google Scholar 

  • Timonen KL, Vanninen E, de Hartog J, Ibald-Mulli A, Brunekreef B, Gold DR, Heinrich J, Hoek G, Lanki T, Peters A, Tarkiainen T, Tiittanen P, Kreyling W, Pekkanen J (2005) Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: the ULTRA study. J Expo Anal Environ Epidemiol 16(4): 332–341.

    Google Scholar 

  • Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111(9):1202–1208.

    CAS  Google Scholar 

  • Thomas-Ahner JM, Wulff BC, Tober KL, Kusewitt DF, Riggenbach JA, Oberyszyn TM (2007) Gender differences in UVB-induced skin carcinogenesis, inflammation, and DNA damage. Cancer Res 67(7):3468–3474.

    CAS  Google Scholar 

  • Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi U (2004) Penetration profile of microspheres in follicular targeting terminal hair follicles. JID 123:168–176.

    CAS  Google Scholar 

  • Trinchieri G, Kubin M, Bellone G, Cassatella MA (1993) Cytokine cross-talk between phagocytic cells and lymphocytes: relevance for differentiation/activation of phagocytic cells and regulation of adaptive immunity. J Cell Biochem 53(4):301–308.

    CAS  Google Scholar 

  • Tripp CS, Blomme EAG, Chinn KS, Hardy MM, LaCelle P, Pentland AP (2003) Epidermal COX-2 induction following ultraviolet irradiation: suggested mechanism for the roe of COX-2 inhibition in photoprotection. J Invest Dermatol 121:853–861.

    CAS  Google Scholar 

  • Tsay JM, Michalet X (2005) New light on quantum dot cytotoxicity. Chem Biol 12:1159–1161.

    CAS  Google Scholar 

  • Turbill P, Beugeling T, Poot AA (1996) Proteins involved in the Vroman effect during exposure of human blood plasma to glass and polyethylene. Biomaterials 17(13):1279–1287.

    CAS  Google Scholar 

  • Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, Autran B, Sterry W, Blume-Peytavi U (2006) 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J Invest Dermatol 126:1316–1322.

    CAS  Google Scholar 

  • Wagner H, Kosta HH, Lehr CM, Schaefer UF (2003) pH profiles in human skin: influence of two in vitro test systems for drug delivery testing. Euro J Pharma Biopharm 55:57–65.

    CAS  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77: 117–125.

    CAS  Google Scholar 

  • Washington N, Steele RJC, Jackson SJ, Bush D, Mason J, Gill DA, Pitt K, Rawlins DA (2000) Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int J Pharm 198:139–146.

    CAS  Google Scholar 

  • Weyenberg W, Filev, P, Van den Plas D, Vandervoort J, De Smet K, Sollie P, Ludwig A (2007) Cytotoxicity of submicron emulsions and solid lipid nanoparticles for dermal application. Int J Pharm 337(1–2):291–298.

    CAS  Google Scholar 

  • Witzmann FA, Monteiro-Riviere NA (2006) Multi-walled carbon nanotube exposure alters protein expression in human keratinocytes. Nanomed: Nanotechnol, Biol, Med 2:158–168.

    CAS  Google Scholar 

  • Wissing SA, Muller RH (2002) The influence of the crystallinity of lipid nanoparticles on their occlusive properties, Int J Pharm 242:377–379.

    CAS  Google Scholar 

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807.

    CAS  Google Scholar 

  • Yacobi NR, Demaio L, Xie J, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED (2008) Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomed 4(20):139–145.

    Google Scholar 

  • Zahr AS, Davis CA, Pishko MV (2006) Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 22:8178–8185.

    CAS  Google Scholar 

  • Zanobetti A, Schwartz J (2001) Are diabetics more susceptible to the health effects of airborne particles? Am J Respir Crit Care Med 164(5):831–833.

    CAS  Google Scholar 

  • Zanobetti A, Schwartz J (2002) Cardiovascular damage by airborne particles: are diabetics more susceptible? Epidemiology 13(5):588–592.

    Google Scholar 

  • Zhang T, Stilwell JL, Gerion D, Ding L, Elboudwarej O, Cooke PA, Gray JW, Alivisatos AP, Chen FF (2006) Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression. Nano Lett 6(4):800–808.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa DeLouise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

DeLouise, L., Mortensen, L., Elder, A. (2009). Breeching Epithelial Barriers – Physiochemical Factors Impacting Nanomaterial Translocation and Toxicity. In: Webster, T. (eds) Safety of Nanoparticles. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78608-7_3

Download citation

Publish with us

Policies and ethics