Skip to main content

Large-Scale Ab Initio Study of Size, Shape, and Doping Effects on Electronic Structure of Nanocrystals

  • Chapter
  • First Online:
Toward Functional Nanomaterials

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 5))

  • 1066 Accesses

Abstract

Semiconductor nanocrystals, such as quantum dots (QDs) and wires (QWs), often contain from a few thousands to more than 106 atoms. It has been a great challenge to calculate the electronic structure of these large nanosystems using self-consistent first-principles method. In this chapter, recent development of calculations of nanocrystal physical properties using the large-scale ab initio pseudopotential or charge-patching methods is reviewed. The calculated size-dependent exciton energies and absorption spectra of QDs and QWs are in good agreement with experiments. The calculated ratios of bandgap increases between QWs and QDs are found to be material-dependent, and for most direct bandgap materials, this ratio is close to 0.586, as predicted by simple effective-mass approximation. We show that the electronic structure of a nanocrystal can be tuned not only by its size, but also by its shape. Therefore, the shape can be used as an efficient way to control the electronic structure of the nanocrystals. Changing the shape is expected to be more flexible and provides more variety of the electronic states than simply changing the size of the system. The special features of the electronic states obtained in different shapes of the nanocrystals can be used in various device applications. We also show that defect properties in QDs could be significantly different from those in bulk semiconductors. For example, although negatively charged DX center is unstable in bulk GaAs:Si with respect to the tetrahedral coordinated SiGa , when the dot size is small enough, it becomes stable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alivisatos, A. P. Science 1996, 271, 933.

    Article  CAS  Google Scholar 

  2. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.

    Article  CAS  Google Scholar 

  3. Brus, L. E. J. Chem.. Phys. 1984, 80, 4403.

    Article  CAS  Google Scholar 

  4. Woggon, U. Optical Properties of Semiconductor Quantum Dost, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  5. Murray, C. B., Norris, D. J., Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.

    Article  CAS  Google Scholar 

  6. Ozin, G. A. Adv. Mater. 1994, 4, 612.

    Article  Google Scholar 

  7. Yoffe, A. D. Adv. Phys. 1993, 42, 173.

    Article  CAS  Google Scholar 

  8. Duan, X., Lieber, C. M. Adv. Mater. 2000, 12, 298.

    Article  CAS  Google Scholar 

  9. Kazes, M., Lewis, D. Y., Ebenstein Y., Mokari, T., Banin, U. Adv. Mater. 2002, 14, 317.

    Article  CAS  Google Scholar 

  10. Huynh, W. U., Dittmer, J. J., Alivisatos, A. P. Science 2002, 295, 2425.

    Article  CAS  Google Scholar 

  11. Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A. P. Science 1998, 281, 2013.

    Article  CAS  Google Scholar 

  12. Manna, L., Scher, E., Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700.

    Article  CAS  Google Scholar 

  13. Manna, L., Milliron, D., Meisel, A., Scher, E., Alivisatos, A. P. Nat. Mater. 2003, 2, 382.

    Article  CAS  Google Scholar 

  14. Wang, Z. L., Pan, Z. W. Adv. Mater. 2002, 14,1029.

    Article  CAS  Google Scholar 

  15. Milliron, D., Hughes, S. M., Cui, Y., Manna, L., Li, J., Wang, L. W., Alivisatos, A. P. Nature 2004, 430, 190.

    Article  CAS  Google Scholar 

  16. Li, J., Wang, L. W. Nano Lett. 2003, 3, 1357.

    Article  CAS  Google Scholar 

  17. Wei, S. -H. Comp. Mater. Sci. 2004, 30, 337.

    Article  CAS  Google Scholar 

  18. Li, J., Wei, S. -H., Wang, L. W. Phys. Rev. Lett. 2005, 94, 185501.

    Article  Google Scholar 

  19. Lang, D. V., Logan, R. A. Phys. Rev. Lett. 1977, 39, 635.

    Article  CAS  Google Scholar 

  20. Zhang, S. B., Wei, S. -H., Zunger, A. Phys. Rev. Lett. 2000, 84, 1232.

    Article  CAS  Google Scholar 

  21. Chadi, D. J., Chang, K. J. Phys. Rev. Lett. 1988, 39, 10063.

    Google Scholar 

  22. Kresse, G., Hafner, J. Phys. Rev. B 1993, 47, 558.

    Article  CAS  Google Scholar 

  23. Wang, L. W.Phys. Rev. Lett. 2002, 88, 256402.

    Article  Google Scholar 

  24. Li, J., Wang, L. W. Phys. Rev. B 2005, 72, 125325 (and references therein).

    Article  Google Scholar 

  25. Yu, H., Li, J., Loomis, R. A., Gibbons, P. C., Wang, L. W., Buhro, W. E. J. Am. Chem. Soc. 2003, 125, 16168.

    Article  CAS  Google Scholar 

  26. Guzelian, A., Katari, J. E. B., Kadavanich A. V., Banin, U., Hamad, K., Juban, E., Alivisatos, A. P., Wolters, R. H., Arnold, C. C., Health, J. R. J. Phys. Chem. 1996, 100, 7212.

    Article  CAS  Google Scholar 

  27. Micic, O. I., Curtis, C. J., Jones, K. M., Sprague, J. R., Nozic, A. J. J. Phys. Chem. 1994, 98, 4966.

    Article  CAS  Google Scholar 

  28. Yu, H., Li, J., Loomis, R. A., Wang, L. W., Buhro, W. E. Nat. Mater. 2003, 2, 517.

    Article  CAS  Google Scholar 

  29. Chen, X., Nazzal, A., Goorskey, D., Xiao, M., Peng, Z. A., Peng, X. Phys. Rev. B, 2001, 64, 245304.

    Article  Google Scholar 

  30. Katz, D., Wizansky, T., Millo, O., Rothenberg, E., Mokari, T., Banin, U. Phys. Rev. Lett. 2002, 89, 86801.

    Article  Google Scholar 

  31. Li, J., Xia, J. B. Phys. Rev. B, 2000, 61, 15880.

    Article  CAS  Google Scholar 

  32. Xia, J. B., Li, J. Phys. Rev. B,. 1999, 60, 11540.

    Article  CAS  Google Scholar 

  33. Li, J., Wang, L. W. Chem. Mater. 2004, 16, 4012

    Article  CAS  Google Scholar 

  34. Li, L. S., Hu, J., Yang, W., Alivisatos, A. P. Nano Lett. 2001, 1, 349.

    Article  CAS  Google Scholar 

  35. Hu, J., Li, L. S., Yang, W., Gin, P., Weiss, P., Alivisatos, A. P. Science 2001, 292, 2060.

    Article  CAS  Google Scholar 

  36. Wei, S. -H., Zhang, S. B. Phys.Rev B 2000, 62, 6944.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J. Li gratefully acknowledges financial support from “One-hundred Talents Plan” of the Chinese Academy of Science. We would like to thank Dr. L. W. Wang for his contribution in this work and helpful discussions. The work is partially supported by the National Natural Science Foundation of China and by the Foundation of the Chinese Academy of Science. The work at NREL is supported by the U.S. DOE under contract No. DE-AC36-99GO10337. The use of computer resources of the NERSC is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, J., Wei, SH. (2009). Large-Scale Ab Initio Study of Size, Shape, and Doping Effects on Electronic Structure of Nanocrystals. In: Wang, Z. (eds) Toward Functional Nanomaterials. Lecture Notes in Nanoscale Science and Technology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77717-7_5

Download citation

Publish with us

Policies and ethics