Skip to main content

EGFR Signaling Pathways in Pancreatic Cancer Pathogenesis

  • Reference work entry
Pancreatic Cancer

Abstract:

The Epidermal Growth Factor Receptor (EGFR/ErbB) signaling axis influences the development, maintenance, and disease of tissues throughout the body. Effects have been demonstrated on normal cell proliferation, migration, differentiation, adhesion, and apoptosis in the pancreas as well as the heart, muscle, nervous system and a wide variety of organ epithelia. In addition, alterations in the EGF pathway, including overexpression of ErbBs, mutations in downstream mediators (e.g., Ras), as well as aberrant signaling, are present in the vast majority of pancreatic and other solid tissue tumors. The importance of the ErbB signaling axis to cancer is illustrated by the number of articles and reviews published on this topic to date (>20,000 and >3,000, respectively). In line with the importance of ErbB signaling to cancer, several anti-cancer therapies have been developed targeting various parts of the ErbB signaling axis. Three are currently in use, and more are undergoing intense development and investigation. Presently, the NIH lists 165 clinical studies of ErbB signaling in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reynolds VH, Boehm FH, Cohen S Enhancement of chemical carcinogenesis by an epidermal growth factor. Surg Forum 1965;16:108–109.

    CAS  PubMed  Google Scholar 

  2. Debray C, Reversat R [Antiulcer extracts taken from the gastrointestinal mucosa and the urine.]. Sem Hop 1950;26(50):2419–2429.

    CAS  PubMed  Google Scholar 

  3. Rivera F, Vega-Villegas ME, Lopez-Brea MF Cetuximab, its clinical use and future perspectives. Anticancer Drugs 2008;19(2):99–113.

    Article  CAS  PubMed  Google Scholar 

  4. Wieduwilt MJ, Moasser MM The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 2008;65(10):1566–1584.

    Article  CAS  PubMed  Google Scholar 

  5. Kritzik MR, et al.: Expression of ErbB receptors during pancreatic islet development and regrowth. J Endocrinol 2000;165(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  6. Huotari MA, et al.: ErbB signaling regulates lineage determination of developing pancreatic islet cells in embryonic organ culture. Endocrinology;2002:143(11):4437–4446.

    Article  CAS  PubMed  Google Scholar 

  7. Means A, et al.: Overexpression of heparin-binding EGF-like growth factor in mouse pancreas results in fibrosis and epithelial metaplasia. Gastroenterology 2003;124(4):1020–1036.

    Article  CAS  PubMed  Google Scholar 

  8. Burtness B Her signaling in pancreatic cancer. Expert Opin Biol Ther 2007;7(6):823–829.

    Article  CAS  PubMed  Google Scholar 

  9. Pryczynicz A, et al.: Expression of EGF and EGFR strongly correlates with metastasis of pancreatic ductal carcinoma. Anticancer Res 2008;28(2B):1399–1404.

    PubMed  Google Scholar 

  10. Harris RC, Chung E, Coffey RJ EGF receptor ligands. Exp Cell Res 2003;284(1):2–13.

    Article  CAS  PubMed  Google Scholar 

  11. Schneider MR, Wolf E The epidermal growth factor receptor ligands at a glance. J Cell Physiol 2009;218(3):460–466.

    Article  CAS  PubMed  Google Scholar 

  12. Sanderson MP, Dempsey PJ, Dunbar AJ Control of ErbB signaling through metalloprotease mediated ectodomain shedding of EGF-like factors. Growth Factors 2006;24(2):121–36.

    Article  CAS  PubMed  Google Scholar 

  13. Hinkle CL, et al.: Selective roles for tumor necrosis factor alpha-converting enzyme/ADAM17 in the shedding of the epidermal growth factor receptor ligand family: the juxtamembrane stalk determines cleavage efficiency. J Biol Chem 2004;279(23):24179–24188.

    Article  CAS  PubMed  Google Scholar 

  14. Sahin U, et al.: Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 2004;164(5):769–779.

    Article  CAS  PubMed  Google Scholar 

  15. Graus-Porta D, et al.: ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. Embo J 1997;16(7):1647–1655.

    Article  CAS  PubMed  Google Scholar 

  16. Tzahar E, et al.: A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 1996;16(10):5276–5287.

    CAS  PubMed  Google Scholar 

  17. Swindle CS, et al.: Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J Cell Biol 2001;154(2):459–468.

    Article  CAS  PubMed  Google Scholar 

  18. Tzahar E, et al.: Pathogenic poxviruses reveal viral strategies to exploit the ErbB signaling network. Embo J 1998;17(20):5948–5963.

    Article  CAS  PubMed  Google Scholar 

  19. Scaltriti M, Baselga J The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res, 2006;12(18):5268–5272.

    Article  CAS  PubMed  Google Scholar 

  20. Jones RB, et al.: A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 2006;439(7073):168–174.

    Article  CAS  PubMed  Google Scholar 

  21. Carpenter G ErbB-4: mechanism of action and biology. Exp Cell Res 2003;284(1):66–77.

    Article  CAS  PubMed  Google Scholar 

  22. Citri A, Skaria KB, Yarden Y The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 2003;284(1):54–65.

    Article  CAS  PubMed  Google Scholar 

  23. Massie C, Mills IG The developing role of receptors and adaptors. Nat Rev Cancer 2006;6(5):403–409.

    Article  CAS  PubMed  Google Scholar 

  24. Schlessinger J, Lemmon MA Nuclear signaling by receptor tyrosine kinases: the first robin of spring. Cell 2006;127(1):45–48.

    Article  CAS  PubMed  Google Scholar 

  25. Bardeesy N, DePinho RA Pancreatic cancer biology and genetics. Nat Rev Cancer 2002;2(12):897–909.

    Article  CAS  PubMed  Google Scholar 

  26. Hruban RH, Wilentz RE, Kern SE Genetic progression in the pancreatic ducts. Am J Pathol 2000;156(6):1821–1825.

    CAS  PubMed  Google Scholar 

  27. Hruban RH, et al.: Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 2006;66(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  28. Yarden Y, Sliwkowski MX Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  29. Hruban RH, et al.: Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 2001;25(5):579–586.

    Article  CAS  PubMed  Google Scholar 

  30. Skwarek LC, Boulianne GL Great expectations for PIP: phosphoinositides as regulators of signaling during development and disease. Dev Cell 2009;16(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  31. Garcia-Echeverria C, Sellers WR Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 2008;27(41):5511–5526.

    Article  CAS  PubMed  Google Scholar 

  32. Wymann MP, Schneiter R Lipid signalling in disease. Nat Rev Mol Cell Biol 2008;9(2):162–176.

    Article  CAS  PubMed  Google Scholar 

  33. Carpenter CL, et al.: Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J Biol Chem 1993;268(13):9478–9483.

    CAS  PubMed  Google Scholar 

  34. Mattoon DR, et al.: The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol 2004;2:24.

    Article  PubMed  Google Scholar 

  35. Cantley LC The phosphoinositide 3-kinase pathway. Science 2002;296(5573):1655–1657.

    Article  CAS  PubMed  Google Scholar 

  36. Sjolander A, et al.: Association of p21ras with phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 1991;88(18):7908–7912.

    Article  CAS  PubMed  Google Scholar 

  37. Currie RA, et al.: Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J 1999;337(Pt 3):575–583.

    Article  CAS  PubMed  Google Scholar 

  38. Abe K, et al.: Vav2 Is an Activator of Cdc42, Rac1, and RhoA. J Biol Chem. 2000;275(14):10141–10149.

    Article  CAS  PubMed  Google Scholar 

  39. Movilla N, et al.: How Vav proteins discriminate the GTPases Rac1 and RhoA from Cdc42. Oncogene 2001;20(56):8057–8065.

    Article  CAS  PubMed  Google Scholar 

  40. Scita G, et al.: EPS8 and E3B1 transduce signals from Ras to Rac. Nature 1999;401(6750):290–293.

    Article  CAS  PubMed  Google Scholar 

  41. Ray R, Vaidya R, Johnson L: MEK/ERK regulates adherens junctions and migration through Rac1. Cell Motility Cytoskeleton 2007;64(3):143–156.

    Article  CAS  Google Scholar 

  42. Nobes CD, Hall A Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995;81(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  43. Hall A Rho GTPases and the Actin Cytoskeleton. Science 1998;279(5350):509–514.

    Article  CAS  PubMed  Google Scholar 

  44. Watanabe N, et al.: Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1999;1(3):136–143.

    Article  CAS  PubMed  Google Scholar 

  45. Schlessinger K., Hall A, Tolwinski N Wnt signaling pathways meet Rho GTPases. Genes Dev 2009;23(3):265–277.

    Article  CAS  PubMed  Google Scholar 

  46. Fernandez-Zapico ME, et al.: Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. Cancer Cell 2005;7(1):39–49.

    Article  CAS  PubMed  Google Scholar 

  47. Ciardiello F, Tortora G EGFR antagonists in cancer treatment. N Engl J Med 2008;358(11):1160–1174.

    Article  CAS  PubMed  Google Scholar 

  48. Harari PM, Wheeler DL, Grandis JR Molecular target approaches in head and neck cancer: epidermal growth factor receptor and beyond. Semin Radiat Oncol 2009;19(1):63–68.

    Article  PubMed  Google Scholar 

  49. Zhang X, Chang A Molecular predictors of EGFR-TKI sensitivity in advanced non-small cell lung cancer. Int J Med Sci 2008;5(4):209–217.

    CAS  PubMed  Google Scholar 

  50. Yang CH EGFR tyrosine kinase inhibitors for the treatment of NSCLC in East Asia: present and future. Lung Cancer 2008;60(Suppl 2):S23–30.

    Article  PubMed  Google Scholar 

  51. Wong KK Searching for a magic bullet in NSCLC: the role of epidermal growth factor receptor mutations and tyrosine kinase inhibitors. Lung Cancer 2008;60(Suppl 2):S10–18.

    Article  PubMed  Google Scholar 

  52. Xiong HQ, et al.: Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: a multicenter phase II Trial. J Clin Oncol 2004;22(13):2610–2616.

    Article  CAS  PubMed  Google Scholar 

  53. Philip PA Improving treatment of pancreatic cancer. Lancet Oncol 2008;9(1):7–8.

    Article  PubMed  Google Scholar 

  54. Moore MJ, et al.: Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007;25(15):1960–1966.

    Article  CAS  PubMed  Google Scholar 

  55. Galizia G, et al.: Cetuximab, a chimeric human mouse anti-epidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer. Oncogene 2007;26(25):3654–3660.

    Article  CAS  PubMed  Google Scholar 

  56. Chung KY, et al.: Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 2005;23(9):1803–1810.

    Article  CAS  PubMed  Google Scholar 

  57. Massarelli E, et al.: KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Cancer Res 2007;13(10):2890–2896.

    Article  CAS  PubMed  Google Scholar 

  58. Mishani E, et al.: Imaging of EGFR and EGFR tyrosine kinase overexpression in tumors by nuclear medicine modalities. Curr Pharm Des 2008;14(28):2983–2998.

    Article  CAS  PubMed  Google Scholar 

  59. Ricono JM, et al.: Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis. Cancer Res 2009;69(4):1383–1391.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratories is supported by AHA SDG 06-30137N (to CRS), NIH DK-52913 (to RU) and Mayo Clinic Pancreatic SPORE P50 CA102701 (to RU).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this entry

Cite this entry

Sussman, C.R., Lomberk, G., Urrutia, R. (2010). EGFR Signaling Pathways in Pancreatic Cancer Pathogenesis. In: Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77498-5_15

Download citation

Publish with us

Policies and ethics