Skip to main content

Functional Genomics in Rose

  • Chapter
Genetics and Genomics of Rosaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 6))

  • 2483 Accesses

Rose is in the infancy of genomics as the genome sequence is not available and only few tools have been developed. Here, we will present all the tools (cDNA libraries, EST, databases, microarrays) that have been developed and their uses in molecular approaches to study different ornamental traits as scent, color, flower development and senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bishopp, A., Mahonen, A.P., and Helariutta, Y. (2006). Signs of change: hormone receptors that regulate plant development. Development 133, 1857–1869.

    Article  CAS  PubMed  Google Scholar 

  • Channeliere, S., Riviere, S., Scalliet, G., Szecsi, J., Jullien, F., Dolle, C., Vergne, P., Dumas, C., Mohammed, B., Hugueney, P., and Cock, J.M. (2002). Analysis of gene expression in rose petals using expressed sequence tags. FEBS Letters 515, 35–38.

    Article  CAS  PubMed  Google Scholar 

  • Chmelnitsky, I., Khayat, E., and Zieslin, N. (2003). Involvement of RAG, a rose homologue of AGAMOUS, in phyllody development of Rosa hybrida cv. Motrea. Plant Growth Regulation 39, 63–66.

    Article  CAS  Google Scholar 

  • Church, S.A., Livingstone, K., Lai, Z., Kozik, A., Knapp, S.J., Michelmore, R.W., and Rieseberg, L.H. (2007). Using variable rate models to identify genes under selection in sequence pairs: their validity and limitations for EST sequences. Journal of Molecular Evolution 64, 171–180.

    Article  CAS  PubMed  Google Scholar 

  • Clark, J.I., Brooksbank, C., and Lomax, J. (2005). It‘s all GO for plant scientists. Plant Physiology 138, 1268–1279.

    Article  CAS  PubMed  Google Scholar 

  • Flament, I., Debonneville, C., and Furrer, A. (1993). Volatiles constituents of roses: characterization of cultivars based on the headspace analysis of living flower emissions. In Bioactive volatile compounds from plants, R. Tenashi, R.G. Buttery, and H. Sugisawa, eds (Washington, DC: American Chemical Society), pp. 269–281.

    Chapter  Google Scholar 

  • Foucher, F., Chevalier, M., Corre, C., Freslon, V., Legeai, F., and Hibrand-Saint Oyant, L. (manuscript submitted). Histological and molecular characterisation of the transition from vegetative to floral meristem in rose.

    Google Scholar 

  • Fukuchi-Mizutani, M., Savin, K., Cornish, E., Tanaka, Y., Ashikari, T., Kusumi, T., and Murata, N. (1995). Senescence-induced expression of a homologue of DELTA 9 desaturase in rose petals. Plant Molecular Biology 29, 627–635.

    Article  CAS  PubMed  Google Scholar 

  • Fukuchi-Mizutani, M., Ishiguro, K., Nakayama, T., Utsunomiya, Y., Tanaka, Y., Kusumi, T., and Ueda, T. (2000). Molecular and functional characterization of a rose lipoxygenase cDNA related to flower senescence. Plant Science 160, 129–137.

    Article  CAS  PubMed  Google Scholar 

  • Guterman, I., Shalit, M., Menda, N., Piestun, D., Dafny-Yelin, M., Shalev, G., Bar, E., Davydov, O., Ovadis, M., Emanuel, M., Wang, J.H., Adam, Z., Pichersky, E., Lewinsohn, E., Zamir, D., Vainstein, A., and Weiss, D. (2002). Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14, 2325–2338.

    Article  CAS  PubMed  Google Scholar 

  • Hattendorf, A., and Debener, T. (2007b). Molecular characterization of NBS-LRR-RGAs in the rose genome. Physiologia Plantarum 129, 775–786.

    Google Scholar 

  • Hibino, Y., Kitahara, K., Hirai, S., and Matsumoto, S. (2006). Structural and functional analysis of rose class B MADS-box genes MASAKO BP, euB3 and B3: paleo-type AP3 homologue MASAKO B3 association with petal development. Plant Science 170, 778–785.

    Article  CAS  Google Scholar 

  • Hibrand-Saint Oyant, L., Crespel, L., Zhang, L., Rajapakse, S., and Foucher, F. (2007). Genetic linkage map of Rose with new microsatellite markers to identify QTL controlling flowering traits. Tree Genetics and Genomes, accepted.

    Google Scholar 

  • Johnson, P.R., and Ecker, J.R. (1998). The ethylene gas signal tranduction pathway: a molecular perspective. Annual Review of Genetics 32, 227–254.

    Article  CAS  PubMed  Google Scholar 

  • Jung, S., Abbott, A., Jesudurai, C., Tomkins, J., and Main, D. (2005). Frequency, type, distribution and annotation of simple sequence repeats in Rosaceae ESTs. Functional & Integrative Genomics 5, 136–143.

    Article  CAS  Google Scholar 

  • Kagami, T., and Suzuki, M. (2005). Molecular and functional analysis of a vacuolar Na+/H+ antiporter gene of Rosa hybrida. Genes and Genetic Systems 80, 121–128.

    Article  CAS  PubMed  Google Scholar 

  • Kitahara, K., and Matsumoto, S. (2000). Rose MADS-box genes ‘MASAKO C1 and D1’ homologous to class C floral identity genes. Plant Science (Limerick) 151, 121–134.

    Article  CAS  Google Scholar 

  • Kitahara, K., Hirai, S., Fukui, H., and Matsumoto, S. (2001). Rose MADS-box genes ‘MASAKO BP and B3’ homologous to class B floral identity genes. Plant Science 161, 549–557.

    Article  CAS  Google Scholar 

  • Lan, T.H., DelMonte, T.A., Reischmann, K.P., Hyman, J., Kowalski, S.P., McFerson, J., Kresovich, S., and Paterson, A.H. (2000). An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Research 10, 776–788.

    Article  CAS  PubMed  Google Scholar 

  • Lavid, N., Wang, J.H., Shalit, M., Guterman, I., Bar, E., Beuerle, T., Menda, N., Shafir, S., Zamir, D., Adam, Z., Vainstein, A., Weiss, D., Pichersky, E., and Lewinsohn, E. (2002). O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiology 129, 1899–1907.

    Article  CAS  PubMed  Google Scholar 

  • Lim, K.Y., Werlemark, G., Matyasek, R., Bringloe, J.B., Sieber, V., El-Mokadem, H., Meynet, J., Hemming, J., Leitch, A.R., and Roberts, A.V. (2005). Evolutionary implications of permanent odd polyploidy in the stable sexual, pentaploid of Rosa canina L. Heredity 94, 501–506.

    Article  CAS  PubMed  Google Scholar 

  • Ma, N., Cai, W., Lu, W., Tan, H., and Gao, J. (2005). Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the gene encoding ethylene biosynthesis enzymes. Science in China 48, 434–444.

    CAS  PubMed  Google Scholar 

  • Ma, N., Tan, H., Liu, X., Xue, J., Li, Y., and Gao, J. (2006). Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. Journal of Experimental Botany 57, 2763–2773.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, V.G. (1966). Flower abnormality. The Botanical Review 32, 165–195.

    Article  Google Scholar 

  • Muller, R., and Stummann, B.M. (2003). Genetic regulation of ethylene perception and signal transduction related to flower senescence. Journal of Food, Agriculture & Environment 1, 87–94.

    CAS  Google Scholar 

  • Muller, R., Stummann, B.M., and Serek, M. (2000a). Characterization of an ethylene receptor family with differential expression in rose (Rosa hybrida L.) flowers. Plant Cell Reports 19, 1232–1239.

    Google Scholar 

  • Muller, R., Lind-Iversen, S., Stummann, B.M., and Serek, M. (2000b). Expression of genes for ethylene biosynthetic enzymes and an ethylene receptor in senescing flowers of miniature potted roses. Journal of Horticultural Science and Biotechnology 75, 12–18.

    Google Scholar 

  • Muller, R., Owen, C.A., Xue, Z., Welander, M., and Stummann, B.M. (2002). Characterization of two CTR-like protein kinases in Rosa hybrida and their expression during flower senescence and in response to ethylene. Journal of Experimental Botany 53, 1223–1225.

    Article  CAS  PubMed  Google Scholar 

  • Muller, R., Owen, C.A., Xue, Z., Welander, M., and Stummann, B. (2003). The transcription factor EIN3 is constitutively expressed in miniature roses with differences in postharvest life. Journal of Horticultural Science and Biotechnology 78, 10–14.

    Google Scholar 

  • Ogata, J., Kanno, Y., Itoh, Y., Tsugawa, H., and Suzuki, M. (2005). Plant biochemistry: Anthocyanin biosynthesis in roses. Nature 435, 757–758.

    Article  CAS  PubMed  Google Scholar 

  • Sane, A.P., Tripathi, S.K., and Pravendra, N. (2007). Petal abscission in rose (Rosa bourboniana var Gruss an Teplitz) is associated with the enhanced expression of an alpha expansin gene, RbEXPA1. Plant Science 172, 481–487.

    Article  CAS  Google Scholar 

  • Scalliet, G., Journot, N., Jullien, F., Baudino, S., Magnard, J.L., Channeliere, S., Vergne, P., Dumas, C., Bendahmane, M., Cock, J.M., and Hugueney, P. (2002). Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose O-methyltransferases. FEBS Letters 523, 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Scalliet, G., Lionnet, C., Bechec, M.l., Dutron, L., Magnard, J.L., Baudino, S., Bergougnoux, V., Jullien, F., Chambrier, P., Vergne, P., Dumas, C., Cock, J.M., and Hugueney, P. (2006). Role of petal-specific orcinol O-methyltransferases in the evolution of rose scent. Plant Physiology 140, 18–29.

    Article  CAS  PubMed  Google Scholar 

  • Shalit, M., Guterman, I., Volpin, H., Bar, E., Tamari, T., Menda, N., Adam, Z., Zamir, D., Vainstein, A., Weiss, D., Pichersky, E., and Lewinsohn, E. (2003). Volatile ester formation in roses. Identification of an acetyl-coenzyme A. Geraniol/Citronellol acetyltransferase in developing rose petals. Plant Physiology 131, 1868–1876.

    Article  CAS  PubMed  Google Scholar 

  • Suwabe, K., Tsukazaki, H., Iketani, H., Hatakeyama, K., Kondo, M., Fujimura, M., Nunome, T., Fukuoka, H., Hirai, M., and Matsumoto, S. (2006). Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: The genetic origin of clubroot resistance. Genetics 173, 309–319.

    Article  CAS  PubMed  Google Scholar 

  • Tan, H., Liu, X., Ma, N., Xue, J., Lu, W., Bai, J.H., and Gao, J. (2006). Ethylene-influenced flower opening and expression of genes encoding Etrs, Ctrs, and Ein3s in two cut rose cultivars. Postharvest Biology and Technology 40, 97–105.

    Article  CAS  Google Scholar 

  • Tanaka, Y., Fukui, Y., Fukuchi-Mizutani, M., Holton, T.A., Higgins, E., and Kusumi, T. (1995). Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene. Plant and Cell Physiology 36, 1023–1031.

    CAS  PubMed  Google Scholar 

  • Wang, D., Fan, J., and Ranu, R.S. (2004a). Cloning and expression of 1-aminocyclopropane-1-carboxylate synthase cDNA from rosa (Rosa x hybrida). Plant Cell Reports 22, 422–429.

    Google Scholar 

  • Wang, K.L.C., Li, H., and Ecker, J.R. (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14, S131–S151.

    CAS  PubMed  Google Scholar 

  • Weigel, D., and Meyerowitz, E.M. (1994). The ABCs of floral homeotic genes. Cell (Cambridge) 78, 203–209.

    CAS  Google Scholar 

  • Wu, S., Watanabe, N., Mita, S., Ueda, Y., Shibuya, M., and Ebizuka, Y. (2003). Two O-methyltransferases isolated from flower petals of Rosa chinensis var. spontanea involved in scent biosynthesis. Journal of Bioscience and Bioengineering 96, 119–128.

    CAS  PubMed  Google Scholar 

  • Wu, S., Watanabe, N., Mita, S., Dohra, H., Ueda, Y., Shibuya, M., and Ebizuka, Y. (2004). The key role of phloroglucinol O-methyltransferase in the biosynthesis of Rosa chinensis volatile 1,3,5-trimethoxybenzene. Plant Physiology 135, 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Q., Wen, X., and Deng, X. (2007). Cloning of two classes of PR genes and the development of SNAP markers for powdery mildew resistance loci in chestnut rose (Rosa roxburghii Tratt). Molecular Breeding 19, 179–191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Foucher, F. (2009). Functional Genomics in Rose. In: Folta, K.M., Gardiner, S.E. (eds) Genetics and Genomics of Rosaceae. Plant Genetics and Genomics: Crops and Models, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77491-6_18

Download citation

Publish with us

Policies and ethics