Skip to main content

Allelopathic Mechanisms and Experimental Methodology

  • Chapter

Abstract

Allelopathy is a complex ecological phenomenon, and it has proven notoriously difficult to develop experimental methods that can distinguish the role of both chemical interference and resource competition on plant growth. This paper discusses two promising new methodologies which can be used to study allelopathic interactions in the greenhouse and field. (a) Bioassays in which the density of the susceptible plant species is varied give results contrary to the expected results of resource competition when a toxin is present in the soil. Compared to a control soil, growth reductions will occur at low density but diminish or disappear at high density. Furthermore, individual plant size may actually increase as density increases. These density-dependent phytotoxic effects result from the fact that plants growing at low densities have a larger amount of the toxin available per plant, and therefore suffer greater growth reductions than those in high densities, where each plant receives a proportionately smaller dose of the toxin. (b) Sorbents based on the polymer polydimethyl-siloxane (PDMS) show promise for the measurement of allelochemical fluxes in the rhizosphere. Various forms of PDMS have been demonstrated to pick up increasing amounts of the lipophilic root exudate sorgoleone when buried beneath sorghum-sudangrass hybrid plants. Work is continuing to determine the stability of sorbed compounds, how broad a range of compounds can be effectively trapped by PDMS, and what forms of PDMS are most useful for field studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, R.N. (1981) Increasing herbicide tolerance of soybeans (Glycine max) by increasing seeding rates. Weed Sci. 29, 336–338.

    CAS  Google Scholar 

  • Baldwin, I.T. and Schultz, J.C. (1983) Rapid changes in tree leaf chemistry induced by damage, evidence for between-plant communication. Science. 221, 277–279.

    Article  PubMed  CAS  Google Scholar 

  • Baltussen, E., Cramers, C. and Sandra, P. (2002) Sorptive sample preparation – a review. Anal. Bioanal. Chem. 373, 3–22.

    Article  PubMed  CAS  Google Scholar 

  • Baltussen, E., Sandra, P., David, F. and Cramers, C. (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples, theory and principles. J. Microcol. Separations. 11, 737–747.

    Article  CAS  Google Scholar 

  • Barnes, J.P. and Putnam, A.R. (1983) Rye residues contribute weed suppression in no-tillage cropping systems. J. Chem. Ecol. 9, 889–906.

    Article  Google Scholar 

  • Barnes, J.P. and Putnam, A.R. (1986) Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale). Weed Sci. 34, 384–390.

    Google Scholar 

  • Blum, U. (1995) The value of model plant-microbe-soil systems for understanding processes associated with allelopathic interaction, one example. In: Inderjit, K.M.M. Dakshini and F.A. Einhellig (Eds.), Allelopathy, Organisms, Processes, and Applications. American Chemical Society, Washington, DC, pp. 127–131.

    Google Scholar 

  • Blum, U. (1999) Designing laboratory plant debris-soil bioassays, Some reflections. In: Inderjit, K.M.M. Dakshini and C.L. Foy (Eds.), Principles and Practices in Plant Ecology, Allelochemical Interactions. CRC Press, Boca Raton, pp. 17–23.

    Google Scholar 

  • Blum, U., Shafer, S.R. and Lehman, M.E. (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils, Concepts vs. an experimental model. Crit. Rev. Plant Sci. 18, 673–693.

    Article  CAS  Google Scholar 

  • Brown, R.T. and Mikola, P. (1974) The influence of fruticose soil lichens on the mycorrhizae and seedling growth of forest trees. Acta For. Fenn. 141, 1–23.

    Google Scholar 

  • Callaway, R.M., DeLuca, T.H. and Belliveau, W.M. (1999) Biological-control herbivores may increase competitive ability of the noxious weed Centaurea maculosa. Ecology. 80, 1196–1201.

    Google Scholar 

  • Campbell, G., Lambert, J.D.H., Arnason, J. and Towers, G.H.N. (1982) Allelopathic properties of α -terthienyl and phenylheptatriyne, naturally occurring compounds of Asteraceae. J. Chem. Ecol. 8, 961–972.

    Article  CAS  Google Scholar 

  • Dalton, B.R., Weed, S.B. and Blum, U. (1987) Plant phenolic acids in soils, a comparison of extraction procedures. Soil Sci. Soc. Am. J. 51, 1515–1521.

    CAS  Google Scholar 

  • Duke, S.O., Vaughn, K.C., Croom, E.M. Jr., and Elsohly, H.N. (1987) Artemisinin, a constituent of annual wormwood (Artemisia annua), is a selective phytotoxin. Weed Sci. 35, 499–505.

    CAS  Google Scholar 

  • Einhellig, F.A. (1987) Interaction among allelochemicals and other stress factors of the plant environment. In: G.R. Waller (Ed.), Allelochemicals, Role in Agriculture and Forestry. American Chemical Society, Washington, DC, pp. 343–357.

    Google Scholar 

  • Fischer N.H., Williamson, G.B., Weidenhamer, J.D. and Richardson, D.R. (1994) In search of allelopathy in the Florida scrub, The role of terpenoids. J. Chem. Ecol. 20, 1355–1380.

    Article  CAS  Google Scholar 

  • Fuerst, E.P, and Putnam, A.R. (1983) Separating the competitive and allelopathic components of interference, theoretical principles. J. Chem. Ecol. 18, 1683–1691.

    Google Scholar 

  • Gallet, C., and Pellissier, F. (1997) Phenolic compounds in natural solutions of a coniferous forest. J. Chem. Ecol. 23, 2401–2412.

    Article  CAS  Google Scholar 

  • Gentle, C.B., and Duggin, J.A. (1997) Allelopathy as a competitive strategy in persistent thickets of Lantana camara L. in three Australian forest communities. Plant Ecol. 132, 85–95.

    Article  Google Scholar 

  • Gliessman, S.R. and Muller, C.H. (1972) The phytotoxic potential of bracken (Pteridum aquilinum (L), Kuhn.). Madrono. 21, 299–304.

    Google Scholar 

  • Gliessman, S.R. and Muller, C.H. (1978) The allelopathic mechanisms of dominance in bracken (Pteridum aquilinum) in southern California. J. Chem. Ecol. 4, 337–362.

    Article  Google Scholar 

  • Gorham, E. (1979) Shoot height, weight and standing crop in relation to density of monospecific plant stands. Nature. 279, 148–150.

    Article  Google Scholar 

  • Harper, J.L. (1977) Population Biology of Plants. Academic Press, London.

    Google Scholar 

  • Harper J.L. (1982) After description. In: E.I. Newman (Ed.), The Plant Community as a Working Mechanism. Special Publication Number 1 of the British Ecological Society, Oxford, pp. 11–25.

    Google Scholar 

  • Hoffman, D.W. and Lavy, T.L. (1978) Plant competition for atrazine. Weed Sci. 26, 94–99.

    CAS  Google Scholar 

  • Humphry, R.W., Mortimer, M. and Marrs, R.H. (2001) The effect of plant density on the response of Agrostemma githago to herbicide. J. Appl. Ecol. 38, 1290–1302.

    Article  CAS  Google Scholar 

  • Inderjit and del Moral, R. (1997) Is separating resource competition from allelopathy realistic? Bot. Rev. 63, 221–230.

    Google Scholar 

  • Inderjit and Mallik, A.U. (2002) Can Kalmia angustifolia interference to black spruce (Picea mariana) be explained by allelopathy? Forest Ecol. Manag. 160, 75–84.

    Google Scholar 

  • Inderjit and Weiner, J. (2001) Plant allelochemical interference or soil chemical ecology? Perspect. Plant Ecol. Evol. Syst. 4, 3–12.

    Google Scholar 

  • Kaminsky, R. (1981) The microbial origin of the allelopathic potential of Adenostoma fasciculatum H & A. Ecol. Monogr. 51, 365–382.

    Google Scholar 

  • Kira, T., Ogawa, H. and Sakazaki, N. (1953) Intraspecific competition among higher plants. I. Competition-density yield interrelationship in regularly dispersed populations. J. Inst. Polytech. Osaka City Univ. D4, 1–16.

    Google Scholar 

  • Kreck, M., Scharrer, A., Bilke, S. and Mosandl, A. (2001) Stir bar sorptive extraction (SBSE)-enantio-MDGC-MS – a rapid method for the enantioselective analysis of chiral flavour compounds in strawberries. Eur. Food Res. Technol. 213, 389–394.

    Article  CAS  Google Scholar 

  • Mallik, A.U. (2001) Black spruce growth and understory species diversity with and without sheep laurel. Agron. J. 93, 92–98.

    CAS  Google Scholar 

  • Mayer, P., Vaes, W., Wijnker, F., LeGierse, K., Kraaij, R., Tolls, J. and Hermens, J. (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ. Sci. Technol. 34, 5177–5183.

    Article  CAS  Google Scholar 

  • Molisch, H. (1937) Der Einfluss einer Pflanze auf die andere-Allelopathie. Fischer, Jena.

    Google Scholar 

  • Muller, C.H. (1966) The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club. 93, 332–351.

    Article  CAS  Google Scholar 

  • Nilsson, M.C. (1994) Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia. 98, 1–7.

    Article  Google Scholar 

  • Nilsson, M.C., Hogberg, P., Zackrisson, O. and Wang, F.Y. (1993) Allelopathic effects by Empetrum hermaphroditum on development and nitrogen uptake by roots and mycorrhizae of Pinus sylvestris. Can. J. Bot. 71, 620–628.

    Google Scholar 

  • Nimbal, C.I., Pedersen, J.F., Yerkes, C.N., Weston, L.A. and Weller, S.C. (1996) Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J. Agric. Food Chem. 44, 1343–1347.

    Article  CAS  Google Scholar 

  • Northup R.R., Dahlgren, R.A., Aide, T.M. and Zimmerman, J.K. (1999) Effect of plant polyphenols on nutrient cycling and implications for community structure. In: Inderjit, K.M.M. Dakshini and C.L. Foy (Eds.), Principles and Practices in Plant Ecology, Allelochemical Interactions. CRC Press, Boca Raton, p. 369.

    Google Scholar 

  • Pawliszyn, J. (1999) Applications of Solid Phase Microextraction. Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Ponder, F. Jr., and Tadros, S.H. (1985) Juglone concentration in soil beneath black walnut interplanted with nitrogen-fixing species. J. Chem. Ecol. 11, 937–942.

    Article  CAS  Google Scholar 

  • Popp, P., Bauer, C., Hauser, B., Keil, P. and Wennrich, L. (2003) Extraction of polycyclic aromatic hydrocarbons and organochlorine compounds from water, a comparison between solid-phase microextraction and stir bar sorptive extraction. J. Sep. Sci. 26, 961–967.

    Article  CAS  Google Scholar 

  • Putnam, A.R., Defrank, J. and Barnes, J.P. (1983) Exploitation of allelopathy for weed control in annual and perennial cropping systems. J. Chem. Ecol. 9, 1001–1010.

    Article  Google Scholar 

  • Radosevich, S.R. and Holt, J.S. (1984) Weed Ecology, Implications for Vegetation Management. John Wiley & Sons, New York.

    Google Scholar 

  • Rice, E.L. (1984) Allelopathy, 2nd ed. Academic Press, New York.

    Google Scholar 

  • Ridenour, W.M. and Callaway, R.M. (2001) The relative importance of allelopathy in interference, the effects of an invasive weed on a native bunchgrass. Oecologia. 126, 444–450.

    Article  Google Scholar 

  • Romeo, J.T. (2000) Raising the beam, moving beyond phytotoxicity. J. Chem. Ecol. 26, 2011–2014.

    Article  CAS  Google Scholar 

  • Romeo, J.T. and Weidenhamer, J.D. (1998) Bioassays for allelopathy in terrestrial plants. In: K.F. Haynes and J.G. Millar (Eds.),Methods of Chemical Ecology, Volume 2, Bioassay Methods. Kluwer Academic Publishers, Norwell, Massachusetts, pp. 179–211.

    Google Scholar 

  • Schmidt, S.K. (1988) Degradation of juglone by soil bacteria. J. Chem. Ecol. 14, 1561–1571.

    Article  CAS  Google Scholar 

  • Skipper, H.D. (1966) Microbial degradation of atrazine in soils. M.S. Thesis. Oregon State Univ., Corvallis.

    Google Scholar 

  • Tanrisever, N., Fischer, N.H. and Williamson, G.B. (1987) Ceratiolin and other flavonoids from Ceratiola ericoides. Phytochemistry. 26, 175–179.

    Article  Google Scholar 

  • Thelen, G.C., Vivanco, J.M., Newingham, B., Good, W., Bais, H.P., Landres, P., Caesar, A. and Callaway, R.M. (2005) Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecol. Lett. 8, 209–217.

    Article  Google Scholar 

  • Thijs, H., Shann, J.R. and Weidenhamer, J.D. (1994) The effect of phytotoxins on competitive outcome in a model system. Ecology. 75, 1959–1964.

    Article  Google Scholar 

  • Tseng, M.H., Kuo, Y.H., Chen, Y.M. and Chou, C.H. (2003) Allelopathic potential of Macaranga tanarius (L.). Muell.-Arg. J. Chem. Ecol. 29, 1269–1286.

    Article  CAS  Google Scholar 

  • Vercammen, J., Sandra, P., Baltussen, E., Sandra, T. and David, F. (2000) Considerations on static and dynamic sorptive sampling to monitor volatiles emitted by living plants. J. High Resol. Chromatogr. 23, 547–553.

    Article  CAS  Google Scholar 

  • Wardle, D.A., Nilsson, M.C. and Gallet, C. (1998) An ecosystem-level perspective of allelopathy. Biol. Rev. 73, 305–319.

    Article  Google Scholar 

  • Weidenhamer, J.D. (1996) Distinguishing resource competition and chemical interference, overcoming the methodological impasse. Agron. J. 88, 866–875.

    Google Scholar 

  • Weidenhamer, J.D. (2005) Biomimetic measurement of allelochemical dynamics in the rhizosphere. J. Chem. Ecol. 31, 221–236.

    Article  PubMed  CAS  Google Scholar 

  • Weidenhamer, J.D. (2006) Distinguishing allelopathy from resource competition, the role of density. In: M.J. Reigosa, N. Pedrol and L. González (Eds.), Allelopathy, a Physiological Process with Ecological Implications. Springer, Dordrecht, The Netherlands, pp. 85–103.

    Google Scholar 

  • Weidenhamer, J.D., Hartnett, D.C. and Romeo, J.T. (1989) Density-dependent phytotoxicity, Distinguishing resource competition and allelopathic interference in plants. J. Appl. Ecol. 26, 613–624.

    Article  CAS  Google Scholar 

  • Weidenhamer, J.D., Morton, T.C. and Romeo J.T. (1987) Solution volume and seed number, often overlooked factors in allelopathic bioassays. J. Chem. Ecol. 13, 1481–1491.

    Google Scholar 

  • Weidenhamer, J.D. and Romeo, J.T. (2004) Allelochemicals of Polygonella myriophylla, chemistry and soil degradation. J. Chem. Ecol. 30:1061–1078.

    Google Scholar 

  • White, C.S. (1994) Monoterpenes, their effects on ecosystem nutrient cycling. J. Chem. Ecol. 20, 1381–1406.

    Article  CAS  Google Scholar 

  • White, J. (1980) Demographic factors in plant populations. In: O.T. Solbrig (Ed.), Demography and Evolution of Plant Populations. Blackwell Scientific Publications, Oxford, pp. 21–48.

    Google Scholar 

  • White, J. and Harper, J.L. (1970) Correlated changes in plant size and number in plant populations. J. Ecol. 58, 467–485.

    Article  Google Scholar 

  • Williamson, G.B. (1990) Allelopathy, Koch’s postulates, and the neck riddle. In J.B. Grace and D. Tilman (Eds.), Perspectives on Plant Competition. Academic Press, San Diego, pp. 143–161.

    Google Scholar 

  • Williamson, G.B., Obee, E.M. and Weidenhamer J.D. (1992) Inhibition of Schizachyrium scoparium (Poaceae) by the allelochemical hydrocinnamic acid. J. Chem. Ecol. 18, 2095–2105.

    Google Scholar 

  • Williamson, G.B. and Weidenhamer, J.D. (1990) Bacterial degradation of juglone, evidence against allelopathy? J. Chem. Ecol. 16, 1739–1742.

    Article  CAS  Google Scholar 

  • Willis, R.J. (1985) The historical bases of the concept of allelopathy. J. Hist. Biol. 18, 71–102.

    Article  Google Scholar 

  • Winkle, M.E., Leavitt, J.R.C. and Burnside O.C. (1981) Effects of weed density on herbicide absorption and bioactivity. Weed Sci. 29, 405–409.

    Google Scholar 

  • Zackrisson, O. and Nilsson, M.C. (1992) Allelopathic effects of Empetrum hermaphroditum on seed germination of two boreal tree species. Can. J. For. Res. 22, 1310–1319.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Weidenhamer, J.D. (2008). Allelopathic Mechanisms and Experimental Methodology. In: Zeng, R.S., Mallik, A.U., Luo, S.M. (eds) Allelopathy in Sustainable Agriculture and Forestry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77337-7_6

Download citation

Publish with us

Policies and ethics