Skip to main content

The Role of Glutamate Transporters in Synaptic Transmission

  • Chapter
Structural And Functional Organization Of The Synapse

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accardi A and Miller C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature 427: 803–807, 2004.

    PubMed  CAS  Google Scholar 

  2. Ahnert-Hilger G, Nurnberg B, Exner T, Schafer T, and Jahn R. The heterotrimeric G protein G02 regulates catecholamine uptake by secretory vesicles. EMBO J 17: 406–413, 1998.

    PubMed  CAS  Google Scholar 

  3. Aihara Y, Mashima H, Onda H, Hisano S, Kasuya H, Hori T, Yamada S, Tomura H, Yamada Y, Inoue I, Kojima I, and Takeda J. Molecular cloning of a novel brain-type Na(+)-dependent inorganic phosphate cotransporter. J Neurochem 74: 2622–2625, 2000.

    PubMed  CAS  Google Scholar 

  4. Albuquerque EX, Barnard EA, Porter CW, and Warnick JE. The density of acetylcholine receptors and their sensitivity in the postsynaptic membrane of muscle endplates. Proc Natl Acad Sci USA 71: 2818–2822, 1974.

    PubMed  CAS  Google Scholar 

  5. Amara SG and Kuhar MJ. Neurotransmitter transporters: recent progress. Annu Rev Neurosci 16: 73–93, 1993.

    PubMed  CAS  Google Scholar 

  6. Armano S, Coco S, Bacci A, Pravettoni E, Schenk U, Verderio C, Varoqui H, Erickson JD, and Matteoli M. Localization and functional relevance of system a neutral amino acid transporters in cultured hippocampal neurons. J Biol Chem 277: 10467–10473, 2002.

    PubMed  CAS  Google Scholar 

  7. Arnth-Jensen N, Jabaudon D, and Scanziani M. Cooperation between independent hippocampal synapses is controlled by glutamate uptake. Nat Neurosci 5: 325–331, 2002.

    PubMed  CAS  Google Scholar 

  8. Arriza JL, Eliasof S, Kavanaugh MP, and Amara SG. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94: 4155–4160, 1997.

    PubMed  CAS  Google Scholar 

  9. Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, and Amara SG. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14: 5559–5569, 1994.

    PubMed  CAS  Google Scholar 

  10. Auger C and Attwell D. Fast removal of synaptic glutamate by postsynaptic transporters. Neuron 28: 547–558, 2000.

    PubMed  CAS  Google Scholar 

  11. Bacci A, Sancini G, Verderio C, Armano S, Pravettoni E, Fesce R, Franceschetti S, and Matteoli M. Block of glutamate-glutamine cycle between astrocytes and neurons inhibits epileptiform activity in hippocampus. J Neurophysiol 88: 2302–2310, 2002.

    PubMed  CAS  Google Scholar 

  12. Bankston LA and Guidotti G. Characterization of ATP transport into chromaffin granule ghosts. Synergy of ATP and serotonin accumulation in chromaffin granule ghosts. J Biol Chem 271: 17132–17138, 1996.

    PubMed  CAS  Google Scholar 

  13. Barasch J, Gershon MD, Nunez EA, Tamir H, and al-Awqati Q. Thyrotropin induces the acidification of the secretory granules of parafollicular cells by increasing the chloride conductance of the granular membrane. J Cell Biol 107: 2137–2147, 1988.

    PubMed  CAS  Google Scholar 

  14. Barberis A, Petrini EM, and Cherubini E. Presynaptic source of quantal size variability at GABAergic synapses in rat hippocampal neurons in culture. Eur J Neurosci 20: 1803– 1810, 2004.

    PubMed  Google Scholar 

  15. Barbour B, Brew H, and Attwell D. Electrogenic uptake of glutamate and aspartate into glial cells isolated from the salamander (Ambystoma) retina. J Physiol (Lond) 436: 169–193, 1991.

    CAS  Google Scholar 

  16. Barbour B and Hausser M. Intersynaptic diffusion of neurotransmitter. Trends Neurosci 20: 377–384, 1997.

    PubMed  CAS  Google Scholar 

  17. Bekkers JM, Richerson GB, and Stevens CF. Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proc Natl Acad Sci USA 87: 5359–5362, 1990a.

    CAS  Google Scholar 

  18. Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, and Edwards RH. The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18: 8648–8659, 1998.

    PubMed  CAS  Google Scholar 

  19. Bellocchio EE, Reimer RJ, Fremeau RTJ, and Edwards RH. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289: 957–960, 2000.

    Google Scholar 

  20. Bergles DE, Dzubay JA, and Jahr CE. Glutamate transporter currents in bergmann glial cells follow the time course of extrasynaptic glutamate. Proc Natl Acad Sci USA 94: 14821–14825, 1997.

    PubMed  CAS  Google Scholar 

  21. Bergles DE and Jahr CE. Glial contribution to glutamate uptake at Schaffer collateralcommissural synapses in the hippocampus. J Neurosci 18: 7709–7716, 1998.

    PubMed  CAS  Google Scholar 

  22. Bergles DE and Jahr CE. Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19: 1297–1308, 1997.

    Google Scholar 

  23. Bergles DE, Tzingounis AV, and Jahr CE. Comparison of coupled and uncoupled currents during glutamate uptake by GLT-1 transporters. J Neurosci 22: 10153–10162, 2002.

    PubMed  CAS  Google Scholar 

  24. Bole DG, Hirata K, and Ueda T. Prolonged depolarization of rat cerebral synaptosomes leads to an increase in vesicular glutamate content. Neurosci Lett 322: 17–20, 2002.

    PubMed  CAS  Google Scholar 

  25. Boulland JL, Qureshi T, Seal RP, Rafiki A, Gundersen V, Bergersen LH, Fremeau RT, Jr., Edwards RH, Storm-Mathisen J, and Chaudhry FA. Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 480: 264–280, 2004.

    PubMed  CAS  Google Scholar 

  26. Brasnjo G and Otis TS. Isolation of glutamate transport-coupled charge flux and estimation of glutamate uptake at the climbing fiber-Purkinje cell synapse. Proc Natl Acad Sci USA 101: 6273–6278, 2004.

    PubMed  CAS  Google Scholar 

  27. Brasnjo G and Otis TS. Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term depression. Neuron 31: 607–616, 2001.

    PubMed  CAS  Google Scholar 

  28. Bröer S, Schuster A, Wagner CA, Bröer A, Forster I, Biber J, Murer H, Werner A, Lang F, and Busch AE. Chloride conductance and Pi transport are separate functions induced by the expression of NaPi-1 in Xenopus oocytes. J Memb Biol 164: 71–77, 1998.

    Google Scholar 

  29. Brunk I, Blex C, Rachakonda S, Holtje M, Winter S, Pahner I, Walther DJ, and Ahnert- Hilger G. The first luminal domain of vesicular monoamine transporters mediates Gprotein- dependent regulation of transmitter uptake. J Biol Chem 281: 33373–33385, 2006.

    PubMed  CAS  Google Scholar 

  30. Bruns D, Riedel D, Klingauf J, and Jahn R. Quantal release of serotonin. Neuron 28: 205–220, 2000.

    PubMed  CAS  Google Scholar 

  31. Busch AE, Schuster A, Waldegger S, Wagner CA, Zempel G, Broer S, Biber J, Murer H, and Lang F. Expression of a renal type I sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions. Proc Natl Acad Sci USA 93: 5347–5351, 1996.

    PubMed  CAS  Google Scholar 

  32. Cabeza R and Collier B. Acetylcholine mobilization in a sympathetic ganglion in the presence and absence of 2-(4-phenylpiperidino)cyclohexanol (AH5183). J Neurochem 50: 112–121, 1988.

    Google Scholar 

  33. Carlson MD, Kish PE, and Ueda T. Characterization of the solubilized and reconstituted ATP-dependent vesicular glutamate uptake system. J Biol Chem 264: 7369–7376, 1989a.

    CAS  Google Scholar 

  34. Carter AG and Regehr WG. Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse. J Neurosci 20: 4423–4434, 2000.

    PubMed  CAS  Google Scholar 

  35. Chaudhry FA, Reimer RJ, and Edwards RH. The glutamine commute: take the N line and transfer to the A. J Cell Biol 157: 349–355, 2002b.

    CAS  Google Scholar 

  36. Chen S and Diamond JS. Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina. J Neurosci 22: 2165–2173, 2002.

    PubMed  CAS  Google Scholar 

  37. Chen W, Mahadomrongkul V, Berger UV, Bassan M, DeSilva T, Tanaka K, Irwin N, Aoki C, and Rosenberg PA. The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. J Neurosci 24: 1136–1148, 2004.

    PubMed  CAS  Google Scholar 

  38. Clark BA and Cull-Candy SG. Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse. J Neurosci 22: 4428–4436, 2002.

    PubMed  CAS  Google Scholar 

  39. Clements JD. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19: 163–171, 1996.

    PubMed  CAS  Google Scholar 

  40. Colliver TL, Pyott SJ, Achalabun M, and Ewing AG. VMAT-Mediated changes in quantal size and vesicular volume. J Neurosci 20: 5276–5282, 2000.

    PubMed  CAS  Google Scholar 

  41. Conti F, DeBiasi S, Minelli A, Rothstein JD, and Melone M. EAAC1, a high-affinity glutamate tranporter, is localized to astrocytes and gabaergic neurons besides pyramidal cells in the rat cerebral cortex. Cereb Cortex 8: 108–116, 1998.

    PubMed  CAS  Google Scholar 

  42. Conti F and Minelli A. Glutamate immuoreactivity in rat cerebral cortex is reversibly abolished by 6-diazo-5-oxo-L-norleucine. J Histochem Cytochem 42: 717–726, 1994.

    PubMed  CAS  Google Scholar 

  43. Croft BG, Fortin GD, Corera AT, Edwards RH, Beaudet A, Trudeau LE, and Fon EA. Normal biogenesis and cycling of empty synaptic vesicles in dopamine neurons of vesicular monoamine transporter 2 knockout mice. Mol Biol Cell 16: 306–315, 2005.

    PubMed  CAS  Google Scholar 

  44. Crowder KM, Gunther JM, Jones TA, Hale BD, Zhang HZ, Peterson MR, Scheller RH, Chavkin C, and Bajjalieh SM. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc Natl Acad Sci USA 96: 15268–15273, 1999.

    PubMed  CAS  Google Scholar 

  45. Curthoys NP and Watford M. Regulation of glutaminase activity and glutamine metabolism. Ann Rev Nutr 15: 133–159, 1995.

    CAS  Google Scholar 

  46. Danbolt NC. Glutamate uptake. Prog Neurobiol 65: 1–105, 2001.

    PubMed  CAS  Google Scholar 

  47. Daniels RW, Collins CA, Chen K, Gelfand MV, Featherstone DE, and Diantonio A. A single vesicular glutamate transporter is sufficient to fill a synaptic vesicle. Neuron 49: 11–16, 2006.

    PubMed  CAS  Google Scholar 

  48. Daniels RW, Collins CA, Gelfand MV, Dant J, Brooks ES, Krantz DE, and DiAntonio A. Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J Neurosci 24: 10466–10474, 2004.

    PubMed  CAS  Google Scholar 

  49. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, and Danbolt NC. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 18: 3606–3619, 1998.

    PubMed  CAS  Google Scholar 

  50. Diamond JS. Deriving the glutamate clearance time course from transporter currents in CA1 hippocampal astrocytes: transmitter uptake gets faster during development. J Neurosci 25: 2906–2916, 2005.

    PubMed  CAS  Google Scholar 

  51. De Gois S, Jeanclos E, Morris M, Grewal S, Varoqui H, and Erickson JD. Identification of endophilins 1 and 3 as selective binding partners for VGLUT1 and their co-localization in neocortical glutamatergic synapses: implications for vesicular glutamate transporter trafficking and excitatory vesicle formation. Cell Mol Neurobiol 26: 679–693, 2006.

    PubMed  Google Scholar 

  52. Diamond JS and Jahr CE. Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation. J Neurophysiol 83: 2835–2843, 2000.

    PubMed  CAS  Google Scholar 

  53. Diamond JS and Jahr CE. Transporters buffer synaptically released glutamate on a submillisecond time scale. J Neurosci 17: 4672–4687, 1997.

    PubMed  CAS  Google Scholar 

  54. Dickman DK, Horne JA, Meinertzhagen IA, and Schwarz TL. A slowed classical pathway rather than kiss-and-run mediates endocytosis at synapses lacking synaptojanin and endophilin. Cell 123: 521–533, 2005.

    PubMed  CAS  Google Scholar 

  55. Doherty P, Hawgood BJ, and Smith IC. Changes in miniature end-plate potentials after brief nervous stimulation at the frog neuromuscular junction. J Physiol 356: 349–358, 1984.

    PubMed  CAS  Google Scholar 

  56. Drory O and Nelson N. The emerging structure of vacuolar ATPases. Physiology (Bethesda) 21: 317–325, 2006.

    CAS  Google Scholar 

  57. Dunant Y and Israel M. Neurotransmitter release at rapid synapses. Biochimie 82: 289–302, 2000.

    PubMed  CAS  Google Scholar 

  58. Elhamdani A, Palfrey HC, and Artalejo CR. Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells. Neuron 31: 819–830, 2001.

    PubMed  CAS  Google Scholar 

  59. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, and Amara SG. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375: 599–603, 1995.

    PubMed  CAS  Google Scholar 

  60. Fernandez-Peruchena C, Navas S, Montes MA, and Alvarez de Toledo G. Fusion pore regulation of transmitter release. Brain Res Brain Res Rev 49: 406–415, 2005.

    PubMed  CAS  Google Scholar 

  61. Fon EA, Pothos EN, Sun B-C, Killeen N, Sulzer D, and Edwards RH. Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19: 1271–1283, 1997.

    PubMed  CAS  Google Scholar 

  62. Forgac M. Structure, mechanism and regulation of the clathrin-coated vesicle and yeast vacuolar H(+)-ATPases. J Exp Biol 203 Pt 1: 71–80, 2000.

    Google Scholar 

  63. Forti L, Bossi M, Bergamaschi A, Villa A, and Malgaroli A. Loose-patch recordings of single quanta at individual hippocampal synapses. Nature 388: 874–878, 1997.

    PubMed  CAS  Google Scholar 

  64. Fremeau RT, Jr., Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, and Edwards RH. The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA 99: 14488–14493, 2002.

    PubMed  CAS  Google Scholar 

  65. Fremeau RT, Jr., Kam K, Qureshi T, Johnson J, Copenhagen DR, Storm-Mathisen J, Chaudhry FA, Nicoll RA, and Edwards RH. Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science 304: 1815–1819, 2004.

    PubMed  CAS  Google Scholar 

  66. Fremeau RT, Jr., Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, and Edwards RH. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31: 247–260, 2001.

    PubMed  CAS  Google Scholar 

  67. Frerking M and Wilson M. Effects of variance in mini amplitude on stimulus-evoked release: a comparison of two models. Biophys J 70: 2078–2091, 1996.

    Article  PubMed  CAS  Google Scholar 

  68. Furness DN and Lehre KP. Immunocytochemical localization of a high-affinity glutamate-aspartate transporter, GLAST, in the rat and guinea-pig cochlea. Eur J Neurosci 9: 1961–1969, 1997.

    PubMed  CAS  Google Scholar 

  69. Genoud C, Quairiaux C, Steiner P, Hirling H, Welker E, and Knott GW. Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol 4: e343, 2006.

    PubMed  Google Scholar 

  70. Gillespie DC, Kim G, and Kandler K. Inhibitory synapses in the developing auditory system are glutamatergic. Nat Neurosci 8: 332–338, 2005.

    PubMed  CAS  Google Scholar 

  71. Ginsberg SD, Rothstein JD, Price DL, and Martin LJ. Fimbria-fornix transections selectively down-regulate subtypes of glutamate transporter and glutamate receptor proteins in septum and hippocampus. J Neurochem 67: 1208–1216, 1996.

    PubMed  CAS  Google Scholar 

  72. Giompres PE, Zimmermann H, and Whittaker VP. Changes in the biochemical and biophysical parameters of cholinergic synaptic vesicles on transmitter release and during a subsequent period of rest. Neuroscience 6: 775–785, 1981.

    PubMed  CAS  Google Scholar 

  73. Glowatzki E, Cheng N, Hiel H, Yi E, Tanaka K, Ellis-Davies GC, Rothstein JD, and Bergles DE. The glutamate-aspartate transporter GLAST mediates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea. J Neurosci 26: 7659–7664, 2006.

    PubMed  CAS  Google Scholar 

  74. Gong LW, Hafez I, Alvarez de Toledo G, and Lindau M. Secretory vesicles membrane area is regulated in tandem with quantal size in chromaffin cells. J Neurosci 23: 7917–7921, 2003.

    PubMed  CAS  Google Scholar 

  75. Grabner CP, Price SD, Lysakowski A, Cahill AL, and Fox AP. Regulation of large dense-core vesicle volume and neurotransmitter content mediated by adaptor protein 3. Proc Natl Acad Sci USA 103: 10035–10040, 2006.

    PubMed  CAS  Google Scholar 

  76. Grabner CP, Price SD, Lysakowski A, and Fox AP. Mouse chromaffin cells have two populations of dense core vesicles. J Neurophysiol 94: 2093–2104, 2005.

    PubMed  Google Scholar 

  77. Gracz LM, Wang W-C, and Parsons SM. Cholinergic synaptic vesicle heterogeneity: evidence for regulation of acetylcholine transport. Biochem 27: 5268–5274, 1988.

    CAS  Google Scholar 

  78. Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, and El Mestikawy S. A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22: 5442–5451, 2002.

    PubMed  CAS  Google Scholar 

  79. Hajos N, Nusser Z, Rancz EA, Freund TF, and Mody I. Cell type- and synapse-specific variability in synaptic GABAA receptor occupancy. Eur J Neurosci 12: 810–818, 2000.

    Google Scholar 

  80. Hakuba N, Koga K, Gyo K, Usami S-i, and Tanaka K. Exacerbation of Noise-Induced Hearing Loss in Mice Lacking the Glutamate Transporter GLAST. J Neurosci 20: 8750– 8753, 2000.

    PubMed  CAS  Google Scholar 

  81. Hamberger A, Chiang GH, Sandoval E, and Cotman CW. Glutamate as a CNS transmitter. II. Regulation of synthesis in the releasable pool. Brain Res 168: 531–541, 1979b.

    CAS  Google Scholar 

  82. Harata NC, Aravanis AM, and Tsien RW. Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. J Neurochem 97: 1546–1570, 2006.

    PubMed  CAS  Google Scholar 

  83. Harkany T, Holmgren C, Hartig W, Qureshi T, Chaudhry FA, Storm-Mathisen J, Dobszay MB, Berghuis P, Schulte G, Sousa KM, Fremeau RT, Jr., Edwards RH, Mackie K, Ernfors P, and Zilberter Y. Endocannabinoid-independent retrograde signaling at inhibitory synapses in layer 2/3 of neocortex: involvement of vesicular glutamate transporter 3. J Neurosci 24: 4978–4988, 2004.

    PubMed  CAS  Google Scholar 

  84. Hartinger J and Jahn R. An anion binding site that regulates the glutamate transporter of synaptic vesicles. J Biol Chem 268: 23122–23127, 1993.

    PubMed  CAS  Google Scholar 

  85. Hartman KN, Pal SK, Burrone J, and Murthy VN. Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons. Nat Neurosci 9: 642–649, 2006.

    PubMed  CAS  Google Scholar 

  86. Hasegawa J, Obara T, Tanaka K, and Tachibana M. High-density presynaptic transporters are required for glutamate removal from the first visual synapse. Neuron 50: 63–74, 2006.

    PubMed  CAS  Google Scholar 

  87. Hausser M and Roth A. Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells. J Physiol (Lond) 501: 77–95, 1997.

    Google Scholar 

  88. He Y, Janssen WG, Rothstein JD, and Morrison JH. Differential synaptic localization of the glutamate transporter EAAC1 and glutamate receptor subunit GluR2 in the rat hippocampus. J Comp Neurol 418: 255–269, 2000.

    PubMed  CAS  Google Scholar 

  89. Hell JW, Maycox PR, and Jahn R. Energy dependence and functional reconstitution of the gamma-aminobutyric acid carrier from synaptic vesicles. J Biol Chem 265: 2111– 2117, 1990.

    PubMed  CAS  Google Scholar 

  90. Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, Giros B, and El Mestikaway S. The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21: RC181, 2001.

    PubMed  CAS  Google Scholar 

  91. Hestrin S, Sah P, and Nicoll RA. Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron 5: 247–253, 1990.

    Google Scholar 

  92. Hiesinger PR, Fayyazuddin A, Mehta SQ, Rosenmund T, Schulze KL, Zhai RG, Verstreken P, Cao Y, Zhou Y, Kunz J, and Bellen HJ. The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121: 607–620, 2005.

    PubMed  CAS  Google Scholar 

  93. Holmseth S, Dehnes Y, Bjornsen LP, Boulland JL, Furness DN, Bergles D, and Danbolt NC. Specificity of antibodies: unexpected cross-reactivity of antibodies directed against the excitatory amino acid transporter 3 (EAAT3). Neuroscience 136: 649–660, 2005.

    PubMed  CAS  Google Scholar 

  94. Höltje M, von Jagow B, Pahner I, Lautenschlager M, Hörtnagl H, Nürnberg B, Jahn R, and Ahnert-Hilger G. The neuronal monoamine transporter VMAT2 is regulated by the trimeric GTPase Go(2). J Neurosci 20: 2131–2141, 2000.

    PubMed  Google Scholar 

  95. Huang YH, Dykes-Hoberg M, Tanaka K, Rothstein JD, and Bergles DE. Climbing fiber activation of EAAT4 transporters and kainate receptors in cerebellar Purkinje cells. J Neurosci 24: 103–111, 2004.

    PubMed  CAS  Google Scholar 

  96. Huang YH, Sinha SR, Tanaka K, Rothstein JD, and Bergles DE. Astrocyte glutamate transporters regulate metabotropic glutamate receptor-mediated excitation of hippocampal interneurons. J Neurosci 24: 4551–4559, 2004.

    PubMed  CAS  Google Scholar 

  97. Huggett J, Vaughan-Thomas A, and Mason D. The open reading frame of the Na(+)- dependent glutamate transporter GLAST-1 is expressed in bone and a splice variant of this molecule is expressed in bone and brain. FEBS Lett 485: 13–18, 2000.

    PubMed  CAS  Google Scholar 

  98. Isaacson JS and Nicoll RA. The uptake inhibitor L-trans-PDC enhances responses to glutamate but fails to alter the kinetics of excitatory synaptic currents in the hippocampus. J Neurophysiol 70: 2187–2191, 1993.

    PubMed  CAS  Google Scholar 

  99. Ishikawa T, Sahara Y, and Takahashi T. A single packet of transmitter does not saturate postsynaptic glutamate receptors. Neuron 34: 613–621, 2002.

    PubMed  CAS  Google Scholar 

  100. Jabaudon D, Shimamoto K, Yasuda-Kamatani Y, Scanziani M, Gahwiler BH, and Gerber U. Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc Natl Acad Sci USA 96: 8733–8738, 1999.

    PubMed  CAS  Google Scholar 

  101. Janz R, Goda Y, Geppert M, Missler M, and Südhof TC. SV2A and SV2B function as redundant Ca2+ regulators in neurotransmitter release. Neuron 24: 1003–1016, 1999.

    PubMed  CAS  Google Scholar 

  102. Jentsch TJ, Poet M, Fuhrmann JC, and Zdebik AA. Physiological functions of CLC Clchannels gleaned from human genetic disease and mouse models. Annu Rev Physiol 67: 779–807, 2005.

    PubMed  CAS  Google Scholar 

  103. Johnson RG. Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport. Physiol Rev 68: 232–307, 1988.

    PubMed  CAS  Google Scholar 

  104. Juge N, Yoshida Y, Yatsushiro S, Omote H, and Moriyama Y. Vesicular glutamate transporter contains two independent transport machineries. J Biol Chem 281: 39499–39506, 2006.

    PubMed  CAS  Google Scholar 

  105. Kam K and Nicoll R. Excitatory synaptic transmission persists independently of the glutamate-glutamine cycle. J Neurosci 27: 9192–9200, 2007.

    PubMed  CAS  Google Scholar 

  106. Kane PM. Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. J Biol Chem 270: 17025–17032, 1995.

    PubMed  CAS  Google Scholar 

  107. Karunanithi S, Marin L, Wong K, and Atwood HL. Quantal size and variation determined by vesicle size in normal and mutant Drosophila glutamatergic synapses. J Neurosci 22: 10267–10276, 2002.

    PubMed  CAS  Google Scholar 

  108. Katagiri H, Tanaka K, and Manabe T. Requirement of appropriate glutamate concentrations in the synaptic cleft for hippocampal LTP induction. Eur J Neurosci 14: 547–553, 2001.

    PubMed  CAS  Google Scholar 

  109. Katz B. Quantal mechanism of neural transmitter release. Science 173: 123–126, 1971.

    PubMed  CAS  Google Scholar 

  110. Kawasaki-Nishi S, Bowers K, Nishi T, Forgac M, and Stevens TH. The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276: 47411–47420, 2001.

    PubMed  CAS  Google Scholar 

  111. Kish PE, Fischer-Bovenkerk C, and Ueda T. Active transport of gamma-aminobutyric acid and glycine into synaptic vesicles. Proc Natl Acad Sci USA 86: 3877–3881, 1989.

    PubMed  CAS  Google Scholar 

  112. Kozminski KD, Gutman DA, Davila V, Sulzer D, and Ewing AG. Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells. Anal Chem 70: 3123–3130, 1998.

    PubMed  CAS  Google Scholar 

  113. Kvamme E, Torgner IA, and Roberg B. Kinetics and localization of brain phosphate activated glutaminase. J Neurosci Res 66: 951–958, 2001.

    PubMed  CAS  Google Scholar 

  114. Laake JH, Slyngstad TA, Haug FM, and Ottersen OP. Glutamine from glial cells is essential for the maintenance of the nerve terminal pool of glutamate: immunogold evidence from hippocampal slice cultures. J Neurochem 65: 871–881, 1995.

    Article  PubMed  CAS  Google Scholar 

  115. Lehre KP and Danbolt NC. The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18: 8751–8757, 1998.

    PubMed  CAS  Google Scholar 

  116. Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, and Danbolt NC. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15: 1835–1853, 1995.

    PubMed  CAS  Google Scholar 

  117. Lehre KP and Rusakov DA. Asymmetry of glia near central synapses favors presynaptically directed glutamate escape. Biophys J 83: 125–134, 2002.

    PubMed  CAS  Google Scholar 

  118. Levy LM, Warr O, and Attwell D. Stoichiometry of the glial glutamate transporter GLT- 1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci 18: 9620–9628, 1998.

    PubMed  CAS  Google Scholar 

  119. Liang SL, Carlson GC, and Coulter DA. Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J Neurosci 26: 8537–8548, 2006.

    PubMed  CAS  Google Scholar 

  120. Liu G, Choi S, and Tsien RW. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices see comments. Neuron 22: 395–409, 1999.

    PubMed  CAS  Google Scholar 

  121. Liu G and Tsien RW. Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375: 404–408, 1995.

    PubMed  CAS  Google Scholar 

  122. Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A, and Fuks B. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci USA 101: 9861–9866, 2004.

    PubMed  CAS  Google Scholar 

  123. Mainen ZF, Malinow R, and Svoboda K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399: 151–155, 1999.

    PubMed  CAS  Google Scholar 

  124. Malinow R and Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25: 103–126, 2002.

    PubMed  CAS  Google Scholar 

  125. Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, and Jones EW. STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem 269: 14064–14074, 1994.

    PubMed  CAS  Google Scholar 

  126. Marc RE, Liu WL, Kalloniatis M, Raiguel SF, and van Haesendonck E. Patterns of glutamate immunoreactivity in the goldfish retina. J Neurosci 10: 4006–4034, 1990.

    PubMed  CAS  Google Scholar 

  127. Marcaggi P, Billups D, and Attwell D. The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fibre synapses. J Physiol 552: 89–107, 2003.

    PubMed  CAS  Google Scholar 

  128. Maron R, Stern Y, Kanner BI, and Schuldiner S. Functional asymmetry of the amine transporter from chromaffin granules. J Biol Chem 258: 11476–11481, 1983.

    PubMed  CAS  Google Scholar 

  129. Masson J, Darmon M, Conjard A, Chuhma N, Ropert N, Thoby-Brisson M, Foutz AS, Parrot S, Miller GM, Jorisch R, Polan J, Hamon M, Hen R, and Rayport S. Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth. J Neurosci 26: 4660–4671, 2006.

    PubMed  CAS  Google Scholar 

  130. Mathews GC and Diamond JS. Neuronal glutamate uptake Contributes to GABA synthesis and inhibitory synaptic strength. J Neurosci 23: 2040–2048, 2003.

    PubMed  CAS  Google Scholar 

  131. Maycox PR, Deckwerth T, Hell JW, and Jahn R. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J Biol Chem 263: 15423–15428, 1988.

    PubMed  CAS  Google Scholar 

  132. McAllister AK and Stevens CF. Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proc Natl Acad Sci USA 97: 6173–6178, 2000.

    PubMed  CAS  Google Scholar 

  133. Miyazaki T, Fukaya M, Shimizu H, and Watanabe M. Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum. Eur J Neurosci 17: 2563–2572, 2003.

    PubMed  Google Scholar 

  134. Moechars D, Weston MC, Leo S, Callaerts-Vegh Z, Goris I, Daneels G, Buist A, Cik M, van der Spek P, Kass S, Meert T, D’Hooge R, Rosenmund C, and Hampson RM. Vesicular glutamate transporter VGLUT2 expression levels control quantal size and neuropathic pain. J Neurosci 26: 12055–12066, 2006.

    PubMed  CAS  Google Scholar 

  135. Morin P, Sagne C, and Gasnier B. Functional characterization of wild-type and mutant human sialin. Embo J 23: 4560–4570, 2004.

    CAS  Google Scholar 

  136. Mosharov EV, Gong LW, Khanna B, Sulzer D, and Lindau M. Intracellular patch electrochemistry: regulation of cytosolic catecholamines in chromaffin cells. J Neurosci 23: 5835–5845, 2003.

    PubMed  CAS  Google Scholar 

  137. Naito S and Ueda T. Characterization of glutamate uptake into synaptic vesicles. J Neurochem 44: 99–109, 1985.

    PubMed  CAS  Google Scholar 

  138. Nakanishi-Matsui M and Futai M. Stochastic proton pumping ATPases: from single molecules to diverse physiological roles. IUBMB Life 58: 318–322, 2006.

    PubMed  CAS  Google Scholar 

  139. Naves LA and Van der Kloot W. Repetitive nerve stimulation decreases the acetylcholine content of quanta at the frog neuromuscular junction. J Physiol 532: 637–647, 2001.

    PubMed  CAS  Google Scholar 

  140. Ni B, Rosteck PR, Nadi NS, and Paul SM. Cloning and expression of a cDNA encoding a brain-specific Na+-dependent inorganic phosphate cotransporter. Proc Natl Acad Sci USA 91: 5607–5611, 1994.

    PubMed  CAS  Google Scholar 

  141. Oertner TG, Sabatini BL, Nimchinsky EA, and Svoboda K. Facilitation at single synapses probed with optical quantal analysis. Nat Neurosci 5: 657–664, 2002.

    PubMed  CAS  Google Scholar 

  142. Oliet SH, Piet R, and Poulain DA. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292: 923–926, 2001.

    PubMed  CAS  Google Scholar 

  143. Otis TS and Jahr CE. Anion currents and predicted glutamate flux through a neuronal glutamate transporter. J Neurosci 18: 7099–7110, 1998.

    PubMed  CAS  Google Scholar 

  144. Otis TS, Kavanaugh MP, and Jahr CE. Postsynaptic glutamate transport at the climbing fiber-Purkinje cell synapse. Science 277: 1515–1518, 1997.

    PubMed  CAS  Google Scholar 

  145. Otis TS, Wu YC, and Trussell LO. Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites. J Neurosci 16: 1634–1644, 1996.

    PubMed  CAS  Google Scholar 

  146. Ozkan ED, Lee FS, and Ueda T. A protein factor that inhibits ATP-dependent glutamate and g-aminobutyric acid accumulation into synaptic vesicles: purification and initial characterization. Proc Natl Acad Sci USA 94: 4137–4142, 1997.

    PubMed  CAS  Google Scholar 

  147. Pahner I, Holtje M, Winter S, Takamori S, Bellocchio EE, Spicher K, Laake P, Numberg B, Ottersen OP, and Ahnert-Hilger G. Functional G-protein heterotrimers are associated with vesicles of putative glutamatergic terminals: implications for regulation of transmitter uptake. Mol Cell Neurosci 23: 398–413, 2003.

    PubMed  CAS  Google Scholar 

  148. Palmer MJ, Taschenberger H, Hull C, Tremere L, and von Gersdorff H. Synaptic activation of presynaptic glutamate transporter currents in nerve terminals. J Neurosci 23: 4831–4841, 2003.

    PubMed  CAS  Google Scholar 

  149. Parsons RL, Calupca MA, Merriam LA, and Prior C. Empty synaptic vesicles recycle and undergo exocytosis at vesamicol-treated motor nerve terminals. J Neurophysiol 81: 2696–2700, 1999.

    PubMed  CAS  Google Scholar 

  150. Peghini P, Janzen J, and Stoffel W. Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. Embo J 16: 3822–3832, 1997.

    PubMed  CAS  Google Scholar 

  151. Peter D, Jimenez J, Liu Y, Kim J, and Edwards RH. The chromaffin granule and synaptic vesicle amine transporters differ in substrate recognition and sensitivity to inhibitors. J Biol Chem 269: 7231–7237, 1994.

    PubMed  CAS  Google Scholar 

  152. Peters C, Bayer MJ, Buhler S, Andersen JS, Mann M, and Mayer A. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409: 581–588, 2001.

    PubMed  CAS  Google Scholar 

  153. Picollo A and Pusch M. Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436: 420–423, 2005.

    PubMed  CAS  Google Scholar 

  154. Pothos EN, Larsen KE, Krantz DE, Liu Y-J, Haycock JW, Setlik W, Gershon ME, Edwards RH, and Sulzer D. Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size. J Neurosci 20: 7297–7306, 2000.

    PubMed  CAS  Google Scholar 

  155. Pothos EN, Mosharov E, Liu KP, Setlik W, Haburcak M, Baldini G, Gershon MD, Tamir H, and Sulzer D. Stimulation-dependent regulation of the pH, volume and quantal size of bovine and rodent secretory vesicles. J Physiol 542: 453–476, 2002.

    PubMed  CAS  Google Scholar 

  156. Pow DV and Barnett NL. Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci Lett 280: 21–24, 2000.

    PubMed  CAS  Google Scholar 

  157. Pow DV and Crook DK. Direct immunocytochemical evidence for the transfer of glutamine from glial cells to neurons: use of specific antibodies directed against the dstereoisomers of glutamate and glutamine. Neuroscience 70: 295–302, 1996.

    PubMed  CAS  Google Scholar 

  158. Pow DV and Robinson SR. Glutamate in some retinal neurons is derived solely from glia. Neurosci 60: 355–366, 1994.

    CAS  Google Scholar 

  159. Prado VF, Martins-Silva C, de Castro BM, and Lima. Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron 51, 2006.

    Google Scholar 

  160. Price GD and Trussell LO. Estimate of the chloride concentration in a central glutamatergic terminal: a gramicidin perforated-patch study on the calyx of Held. J Neurosci 26: 11432–11436, 2006.

    PubMed  CAS  Google Scholar 

  161. Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE, and Rothstein JD. Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27: 6607–6619, 2007.

    PubMed  CAS  Google Scholar 

  162. Rizzoli SO and Betz WJ. Synaptic vesicle pools. Nat Rev Neurosci 6: 57–69, 2005.

    PubMed  CAS  Google Scholar 

  163. Rossi DJ, Oshima T, and Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403: 316–321, 2000.

    PubMed  CAS  Google Scholar 

  164. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, and al e. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16: 675–686, 1996.

    PubMed  CAS  Google Scholar 

  165. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, and Kuncl RW. Localization of neuronal and glial glutamate transporters. Neuron 13: 713–725, 1994.

    PubMed  CAS  Google Scholar 

  166. Rothstein JD and Tabakoff B. Alteration of striatal glutamate release after glutamine synthetase inhibition. J Neurochem 43: 1438–1446, 1984.

    PubMed  CAS  Google Scholar 

  167. Sandoval GM, Duerr JS, Hodgkin J, Rand JB, and Ruvkun G. A genetic interaction between the vesicular acetylcholine transporter VAChT/UNC-17 and synaptobrevin/SNB-1 in C. elegans. Nat Neurosci 9: 599–601, 2006.

    PubMed  CAS  Google Scholar 

  168. Sarantis M, Ballerini L, Miller B, Silver RA, Edwards M, and Attwell D. Glutamate uptake from the synaptic cleft does not shape the decay of the non-NMDA component of the synaptic current. Neuron 11: 541–549, 1993.

    PubMed  CAS  Google Scholar 

  169. Schafer MK, Varoqui H, Defamie N, Weihe E, and Erickson JD. Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem 277: 50734–50748, 2002.

    PubMed  Google Scholar 

  170. Scheel O, Zdebik AA, Lourdel S, and Jentsch TJ. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436: 424–427, 2005.

    PubMed  CAS  Google Scholar 

  171. Sepkuty JP, Cohen AS, Eccles C, Rafiq A, Behar K, Ganel R, Coulter DA, and Rothstein JD. A neuronal glutamate transporter contributes to neurotransmitter GABA synthesis and epilepsy. J Neurosci 22: 6372–6379, 2002.

    PubMed  CAS  Google Scholar 

  172. Shimamoto K, Lebrun B, Yasuda-Kamatani Y, Sakaitani M, Shigeri Y, Yumoto N, and Nakajima T. DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol Pharmacol 53: 195–201, 1998.

    PubMed  CAS  Google Scholar 

  173. Shupliakov O, Atwood HL, Ottersen OP, Storm-Mathisen J, and Brodin L. Presynaptic glutamate levels in tonic and phasic motor axons correlate with properties of synaptic release. J Neurosci 15: 7168–7180, 1995.

    PubMed  CAS  Google Scholar 

  174. Smear MC, Tao HW, Staub W, Orger MB, Gosse NJ, Liu Y, Takahashi K, Poo MM, and Baier H. Vesicular glutamate transport at a central synapse limits the acuity of visual perception in zebrafish. Neuron 53: 65–77, 2007.

    PubMed  CAS  Google Scholar 

  175. Song H-j, Ming G-l, Fon E, Bellocchio E, Edwards RH, and Poo M-m. Expression of a putative vesicular acetylcholine transporter facilitates quantal transmitter packaging. Neuron 18: 815–826, 1997.

    PubMed  CAS  Google Scholar 

  176. Spacek J. Three-dimensional analysis of dendritic spines. III. Glial sheath. Anat Embryol (Berl) 171: 245–252, 1985.

    CAS  Google Scholar 

  177. Steinert JR, Kuromi H, Hellwig A, Knirr M, Wyatt AW, Kidokoro Y, and Schuster CM. Experience-dependent formation and recruitment of large vesicles from reserve pool. Neuron 50: 723–733, 2006.

    PubMed  CAS  Google Scholar 

  178. Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, Bösl MR, Ruether K, Jahn H, Draguhn A, Jahn R, and Jentsch TJ. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29: 185–196, 2001.

    PubMed  CAS  Google Scholar 

  179. Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FM, and Ottersen OP. First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301: 517–520, 1983.

    PubMed  CAS  Google Scholar 

  180. Sullivan R, Rauen T, Fischer F, Wiessner M, Grewer C, Bicho A, and Pow DV. Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat CNS: implications for CNS glutamate homeostasis. Glia 45: 155–169, 2004.

    PubMed  Google Scholar 

  181. Sulzer D and Pothos EN. Regulation of quantal size by presynaptic mechanisms. Rev Neurosci 11: 159–212, 2000.

    PubMed  CAS  Google Scholar 

  182. Tabb JS, Kish PE, Van Dyke R, and Ueda T. Glutamate transport into synaptic vesicles. J Biol Chem 267: 15412–15418, 1992.

    PubMed  CAS  Google Scholar 

  183. Takamori S, Malherbe P, Broger C, and Jahn R. Molecular cloning and functional characterization of human vesicular glutamate transporter 3. EMBO Rep 3: 798–803, 2002.

    PubMed  CAS  Google Scholar 

  184. Takamori S, Rhee JS, Rosenmund C, and Jahn R. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407: 189–194, 2000.

    PubMed  CAS  Google Scholar 

  185. Takamori S, Rhee JS, Rosenmund C, and Jahn R. Identification of differentiationassociated brain-specific phosphate transporter as a second vesicular glutamate transporter. J Neurosci 21: RC182, 2001.

    PubMed  CAS  Google Scholar 

  186. Takayasu Y, Iino M, Kakegawa W, Maeno H, Watase K, Wada K, Yanagihara D, Miyazaki T, Komine O, Watanabe M, Tanaka K, and Ozawa S. Differential roles of glial and neuronal glutamate transporters in Purkinje cell synapses. J Neurosci 25: 8788– 8793, 2005.

    PubMed  CAS  Google Scholar 

  187. Takayasu Y, Iino M, Shimamoto K, Tanaka K, and Ozawa S. Glial glutamate transporters maintain one-to-one relationship at the climbing fiber-Purkinje cell synapse by preventing glutamate spillover. J Neurosci 26: 6563–6572, 2006.

    PubMed  CAS  Google Scholar 

  188. Tamir H, Liu KP, Adlersberg M, Hsiung SC, and Gershon MD. Acidification of serotonin-containing secretory vesicles induced by a plasma membrane calcium receptor. J Biol Chem 271: 6441–6450, 1996.

    PubMed  CAS  Google Scholar 

  189. Tamura Y, Ozkan ED, Bole DG, and Ueda T. IPF, a vesicular uptake inhibitory protein factor, can reduce the Ca(2+)-dependent, evoked release of glutamate, GABA and serotonin. J Neurochem 76: 1153–1164, 2001.

    PubMed  CAS  Google Scholar 

  190. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, and Wada K. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276: 1699–1702, 1997.

    PubMed  CAS  Google Scholar 

  191. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, and Wada K. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276: 1699–1702, 1997.

    PubMed  CAS  Google Scholar 

  192. Tani H, Bandrowski AE, Parada I, Wynn M, Huguenard JR, Prince DA, and Reimer RJ. Modulation of epileptiform activity by glutamine and system A transport in a model of post-traumatic epilepsy. Neurobiol Dis 25: 230–238, 2007.

    PubMed  CAS  Google Scholar 

  193. Theodosis DT and Poulain DA. Activity-dependent neuronal-glial and synaptic plasticity in the adult mammalian hypothalamus. Neuroscience 57: 501–535, 1993.

    PubMed  CAS  Google Scholar 

  194. Tong G and Jahr CE. Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13: 1195–1203, 1994.

    PubMed  CAS  Google Scholar 

  195. Torres GE and Amara SG. Glutamate and monoamine transporters: new visions of form and function. Curr Opin Neurobiol 17: 304–312, 2007.

    PubMed  CAS  Google Scholar 

  196. Travis ER, Wang YM, Michael DJ, Caron MG, and Wightman RM. Differential quantal release of histamine and 5-hydroxytryptamine from mast cells of vesicular monoamine transporter 2 knockout mice. Proc Natl Acad Sci USA 97: 162–167, 2000.

    PubMed  CAS  Google Scholar 

  197. Trussell LO and Fischbach GD. Glutamate receptor desensitization and its role in synaptic transmission. Neuron 3: 209–218, 1989.

    PubMed  CAS  Google Scholar 

  198. Van der Kloot W. Loading and recycling of synaptic vesicles in the Torpedo electric organ and the vertebrate neuromuscular junction. Prog Neurobiol 71: 269–303, 2003.

    PubMed  Google Scholar 

  199. Van der Kloot W, Colasante C, Cameron R, and Molgo J. Recycling and refilling of transmitter quanta at the frog neuromuscular junction. J Physiol 523 Pt 1: 247–258, 2000.

    Google Scholar 

  200. Varoqui H and Erickson JD. Active transport of acetylcholine by the human vesicular acetylcholine transporter. J Biol Chem 271: 27229–27232, 1996.

    PubMed  CAS  Google Scholar 

  201. Varoqui H, Schafer MK-H, Zhu H, Weihe E, and Erickson JD. Identification of the differentiation-associated Na+/Pi transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22: 142–155, 2002.

    PubMed  CAS  Google Scholar 

  202. Ventura R and Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19: 6897–6906., 1999.

    PubMed  CAS  Google Scholar 

  203. Verheijen FW, Verbeek E, Aula N, Beerens CE, Havelaar AC, Joosse M, Peltonen L, Aula P, Galjaard H, van der Spek PJ, and Mancini GM. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nature Genetics 23: 462–465, 1999.

    PubMed  CAS  Google Scholar 

  204. Veruki ML, Morkve SH, and Hartveit E. Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat Neurosci 9: 1388–1396, 2006.

    PubMed  CAS  Google Scholar 

  205. Voglmaier SM, Kam K, Yang H, Fortin DL, Hua Z, Nicoll RA, and Edwards RH. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51: 71–84, 2006.

    PubMed  CAS  Google Scholar 

  206. Wadiche JI, Amara SG, and Kavanaugh MP. Ion fluxes associated with excitatory amino acid transport. Neuron 15: 721–728, 1995.

    PubMed  CAS  Google Scholar 

  207. Wadiche JI, Arriza JL, Amara SG, and Kavanaugh MP. Kinetics of a human glutamate transporter. Neuron 14: 1019–1027, 1995.

    PubMed  CAS  Google Scholar 

  208. Wadiche JI and Jahr CE. Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron 32: 301–313, 2001.

    PubMed  CAS  Google Scholar 

  209. Wadiche JI and Jahr CE. Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat Neurosci 8: 1329–1334, 2005.

    PubMed  CAS  Google Scholar 

  210. Wadiche JI and Kavanaugh MP. Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J Neurosci 18: 7650–7661, 1998.

    PubMed  CAS  Google Scholar 

  211. Wallen-Mackenzie A, Gezelius H, Thoby-Brisson M, Nygard A, Enjin A, Fujiyama F, Fortin G, and Kullander K. Vesicular glutamate transporter 2 is required for central respiratory rhythm generation but not for locomotor central pattern generation. J Neurosci 26: 12294–12307, 2006.

    PubMed  CAS  Google Scholar 

  212. Wang X, Li Y, Engisch KL, Nakanishi ST, Dodson SE, Miller GW, Cope TC, Pinter MJ, and Rich MM. Activity-dependent presynaptic regulation of quantal size at the mammalian neuromuscular junction in vivo. J Neurosci 25: 343–351, 2005.

    PubMed  CAS  Google Scholar 

  213. Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, and Tanaka K. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10: 976–988, 1998.

    PubMed  CAS  Google Scholar 

  214. Wilson NR, Kang J, Hueske EV, Leung T, Varoqui H, Murnick JG, Erickson JD, and Liu G. Presynaptic regulation of quantal size by the vesicular glutamate transporter VGLUT1. J Neurosci 25: 6221–6234, 2005.

    PubMed  CAS  Google Scholar 

  215. Winkler BS, Kapousta-Bruneau N, Arnold MJ, and Green DG. Effects of inhibiting glutamine synthetase and blocking glutamate uptake on b-wave generation in the isolated rat retina. Vis Neurosci 16: 345–353, 1999.

    PubMed  CAS  Google Scholar 

  216. Winter S, Brunk I, Walther DJ, Holtje M, Jiang M, Peter JU, Takamori S, Jahn R, Birnbaumer L, and Ahnert-Hilger G. Galphao2 regulates vesicular glutamate transporter activity by changing its chloride dependence. J Neurosci 25: 4672–4680, 2005.

    PubMed  CAS  Google Scholar 

  217. Wojcik SM, Rhee JS, Herzog E, Sigler A, Jahn R, Takamori S, Brose N, and Rosenmund C. An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proc Natl Acad Sci USA 101: 7158–7163, 2004.

    PubMed  CAS  Google Scholar 

  218. Wolosker H, de Souza DO, and de Meis L. Regulation of glutamate transport into synaptic vesicles by chloride and proton gradient. J Biol Chem 271: 11726–11731, 1996.

    PubMed  CAS  Google Scholar 

  219. Wreden CC, Wlizla M, and Reimer RJ. Varied mechanisms underlie the free sialic acid storage disorders. J Biol Chem 280: 1408–1416, 2005.

    PubMed  CAS  Google Scholar 

  220. Wu XS, Xue L, Mohan R, Paradiso K, Gillis KD, and Wu LG. The origin of quantal size variation: vesicular glutamate concentration plays a significant role. J Neurosci 27: 3046–3056, 2007.

    PubMed  CAS  Google Scholar 

  221. Yamada K, Watanabe M, Shibata T, Tanaka K, Wada K, and Inoue Y. EAAT4 is a postsynaptic glutamate transporter at Purkinje cell synapses. Neuroreport 7: 2013–2017, 1996.

    PubMed  CAS  Google Scholar 

  222. Yamashita T, Ishikawa T, and Takahashi T. Developmental increase in vesicular glutamate content does not cause saturation of AMPA receptors at the calyx of held synapse. J Neurosci 23: 3633–3638, 2003.

    PubMed  CAS  Google Scholar 

  223. Yelamanchili SV, Pendyala G, Brunk I, Darna M, Albrecht U, and Ahnert-Hilger G. Differential sorting of the vesicular glutamate transporter 1 into a defined vesicular pool is regulated by light signaling involving the clock gene Period2. J Biol Chem 281: 15671–15679, 2006.

    PubMed  CAS  Google Scholar 

  224. Zerangue N and Kavanaugh MP. Flux coupling in a neuronal glutamate transporter. Nature 383: 634–637, 1996.

    PubMed  CAS  Google Scholar 

  225. Zhang B, Ganetzky B, Bellen HJ, and Murthy VN. Tailoring uniform coats for synaptic vesicles during endocytosis. Neuron 23: 419–422, 1999.

    PubMed  CAS  Google Scholar 

  226. Zhang B, Koh YH, Beckstead RB, Budnik V, Ganetzky B, and Bellen HJ. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21: 1465–1475, 1998.

    PubMed  CAS  Google Scholar 

  227. Zhou Q, Petersen CCH, and Nicoll RA. Effects of reduced vesicular filling on synaptic transmission in rat hippocampal neurones. J Physiol 525: 195–206, 2000.

    PubMed  CAS  Google Scholar 

  228. Zimmermann H and Denston CR. Recycling of synaptic vesicles in the cholinergic synapses of the Torpedo electric organ during induced transmitter release. Neuroscience 2: 695–714, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bergles, D.E., Edwards, R.H. (2008). The Role of Glutamate Transporters in Synaptic Transmission. In: Hell, J.W., Ehlers, M.D. (eds) Structural And Functional Organization Of The Synapse. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77232-5_2

Download citation

Publish with us

Policies and ethics