Skip to main content

Bayesian Model Comparison of Structural Equation Models

  • Chapter

Part of the book series: Lecture Notes in Statistics ((LNS,volume 192))

Abstract

Structural equation modeling is a multivariate method for establishing meaningful models to investigate the relationships of some latent (causal) and manifest (control) variables with other variables. In the past quarter of a century, it has drawn a great deal of attention in psychometrics and sociometrics, both in terms of theoretical developments and practical applications (see Bentler and Wu, 2002; Bollen, 1989; Jöreskog and Sörbom, 1996; Lee, 2007). Although not to the extent that they have been used in behavioral, educational, and social sciences, structural equation models (SEMs) have been widely used in public health, biological, and medical research (see Bentler and Stein, 1992; Liu et al. 2005; Pugesek et al., 2003 and references therein). A review of the basic SEM with applicants to environmental epidemiology has been given by Sanchez et al. (2005).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ansari, A. and Jedidi, K. (2000). Bayesian factor analysis for multilevel binary observations. Psychometrika, 65, 475–498

    Article  MathSciNet  Google Scholar 

  • Austin, P. C. and Escobar, M. D. (2005). Bayesian modeling of missing data in clinical research. Computational Statistics and Data Analysis, 48, 821–836

    Article  MathSciNet  Google Scholar 

  • Bentler, P. M. and Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588–606

    Article  Google Scholar 

  • Bentler, P. M. and Stein, J. A. (1992). Structural equation models in medical research. Statistical Methods in Medical Research, 1, 159–181

    Article  Google Scholar 

  • Bentler, P. M. and Wu, E. J. C. (2002). EQS6 for Windows User Guide. Encino, CA: Multivariate Software, Inc.

    Google Scholar 

  • Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: Wiley

    MATH  Google Scholar 

  • Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American Statistical Association, 90, 1313–1321

    Article  MathSciNet  MATH  Google Scholar 

  • Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the Metropolis-Hastings outputs. Journal of the American Statistical Association, 96, 270–281

    Article  MathSciNet  MATH  Google Scholar 

  • Congdon, P. (2005). Bayesian predictive model comparison via parallel sampling. Computational Statistics and Data Analysis, 48, 735–753

    Article  MathSciNet  MATH  Google Scholar 

  • Diciccio, T. J., Kass, R. E., Raftery, A. and Wasserman, L. (1997). Computing Bayes factors by combining simulation and asymptotic approximations. Journal of the American Statistical Association, 92, 903–915

    Article  MathSciNet  MATH  Google Scholar 

  • Dolan, C, van der Sluis, S. and Grasman, R. (2005). A note on normal theory power calculation in SEM with data missing completely at random. Structural Equation Modeling, 12, 245–62

    Article  MathSciNet  Google Scholar 

  • Dunson, D. B. (2000). Bayesian latent variable models for clustered mixed outcomes. Journal of the Royal Statistical Society Series B, 62, 355–366

    Article  MathSciNet  Google Scholar 

  • Dunson, D. B. (2005). Bayesian semiparametric isotonic regression for count data. Journal of the American Statistical Association, 100, 618–627

    Article  MathSciNet  MATH  Google Scholar 

  • Dunson, D. B. and Herring, A. H. (2005). Bayesian latent variable models for mixed discrete outcomes. Biostatistics, 6, 11–25

    Article  MATH  Google Scholar 

  • Garcia-Donato, G. and Chan, M. H. (2005). Calibrating Bayes factor under prior predictive distributions. Statistica Sinica, 15, 359–380

    MathSciNet  MATH  Google Scholar 

  • Gelfand, A. E. and Dey D. K. (1994). Bayesian model choice: asymptotic and exact calculations. Journal of the Royal Statistical Society, Series B, 56, 501–514

    MathSciNet  MATH  Google Scholar 

  • Gelman, A. and Meng, X. L. (1998). Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Statistical Science, 13, 163–185

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., Meng, X. L. and Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733–807

    MathSciNet  MATH  Google Scholar 

  • Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741

    Article  MATH  Google Scholar 

  • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their application.Biometrika, 57, 97–109

    Article  MATH  Google Scholar 

  • Joreskog, K. G. and Sörbom, D. (1996). LISREL 8: Structural Equation Modeling with the SIM- PLIS Command Language. Scientific Software International: Hove and London

    Google Scholar 

  • Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795

    Article  MATH  Google Scholar 

  • Kim, K. H. (2005). The relation among fit indices, power, and sample size in structural equation modeling. Structural Equation Modeling, 12, 368–390

    Article  MathSciNet  Google Scholar 

  • Lee, S. Y. (2007). Structural Equations Modelling:ABayesian Approach. New York: Wiley

    Book  Google Scholar 

  • Lee, S. Y. and Song, X. Y. (2003). Model comparison of a nonlinear structural equation model with fixed covariates. Psychometrika, 68, 27–47

    Article  MathSciNet  Google Scholar 

  • Lee, S. Y. and Song, X. Y. (2004a). Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research, 39, 653–686

    Article  Google Scholar 

  • Lee, S. Y. and Song, X. Y. (2004b). Maximum likelihood analysis of a general latent variable model with hierarchically mixed data. Biometrics, 60, 624–636

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S. Y. and Xia, Y. M. (2006). Maximum likelihood methods in treating outliers and symmetrically heavy-tailed distributions for nonlinear structural equation models with missing data. Psychometrika, 71, 565–585

    Article  MathSciNet  Google Scholar 

  • Levin, H. M. (1998). Accelerated schools: a decade of evolution. In A. Hargreavers et al. (Eds) International Handbook of Educational Change, Part Two(pp 809–810). New York: Kluwer

    Google Scholar 

  • Liu, X., Wall, M. M. and Hodges, J. S. (2005). Generalized spatial structural equation models. Biostatistics, 6, 539–551

    Article  MATH  Google Scholar 

  • Meng, X. L. and Wong, H. W. (1996). Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. Statistica Sinica, 6, 831–860

    MathSciNet  MATH  Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equations of state calculations by fast computing machine. Journal of Chemical Physics, 21, 1087–1091

    Article  Google Scholar 

  • Ogata, Y. (1989). A Monte Carlo method for high dimensional integration. Numerische Mathe-matik, 55, 137–157

    Article  MathSciNet  MATH  Google Scholar 

  • Palomo, J., Dunson, D. B. and Bollen, K. (2007). Bayesian structural equation modeling. In S. Y. Lee (Ed) Handbook of Latent Variable and Related Models. Amsterdam: Elsevier

    Google Scholar 

  • Pugesek, B. H., Tomer, A. and von Eye, A. (2003). Structural Equation Modeling Applications in Ecological and Evolutionary Biology. New York: Cambridge University Press

    Book  MATH  Google Scholar 

  • Raftery, A. E. (1993). Bayesian model selection in structural equation models. In K. A. Bollen and J. S. Long (Eds) Testing Structural Equation Models(pp 163–180). Thousand Oaks, CA: Sage Publications

    Google Scholar 

  • Raftery, A. E. (1996). Hypothesis testing and model selection. In W. R. Wilks, S. Richardson and D. J. Spieglhalter (Eds) Practical Markov Chain Monte Carlo(pp 163–188). London: Chapman and Hall

    Google Scholar 

  • Raykov, T. and Marcoulides, G. A. (2006). On multilevel model reliability estimation from the perspective of structural equation modeling. Structural Equation Modeling, 13, 130–141

    Article  MathSciNet  Google Scholar 

  • Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixture with an unknown number of components (with discussion). Journal of the Royal Statistical Society, Series B, 59, 731–792

    Article  MathSciNet  MATH  Google Scholar 

  • Sanchez, B. N., Budtz-Jorgenger, E., Ryan, L. M. and Hu, H. (2005). Structural equation models: a review with applications to environmental epidemiology. Journal of the American Statistical Association, 100, 1443–1455

    Article  MathSciNet  MATH  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, J. Q. and Lee, S. Y. (2000). Latent variable models with mixed continuous and polytomous data. Journal of the Royal Statistical Society, Series B, 62, 77–87

    Article  MathSciNet  MATH  Google Scholar 

  • Song, X. Y. and Lee, S. Y. (2004). Bayesian analysis of two-level nonlinear structural equation models with continuous and polytomous data. British Journal of Mathematical and Statistical Psychology, 57, 29–52

    Article  MathSciNet  Google Scholar 

  • Song, X. Y. and Lee, S. Y. (2005). A multivariate probit latent variable model for analyzing di-chotomous responses. Statistica Sinica, 15, 645–664

    MathSciNet  MATH  Google Scholar 

  • Song, X. Y. and Lee, S. Y. (2006a). Model comparison of generalized linear mixed models. Statistics in Medicine, 25, 1685–1698

    Article  MathSciNet  Google Scholar 

  • Song, X. Y. and Lee, S. Y. (2006b). Bayesian analysis of latent variable models with non-ignorable missing outcomes from exponential family. Statistics in Medicine, 26, 681–693

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64, 583–639

    Article  MATH  Google Scholar 

  • Spiegelhalter, D. J., Thomas, A., Best, N. G. and Lunn, D. (2003). WinBugs User Manual. Version 1.4. Cambridge, England: MRC Biostatistics Unit

    Google Scholar 

  • Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American statistical Association, 82, 528–550

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research is fully supported by two grants (CUHK 404507 and 450607) from the Research Grant Council of the Hong Kong Special Administrative Region, and a direct grant from the Chinese University of Hong Kong (Project ID 2060278). The authors are indebted to Dr. John C. K. Lee, Faculty of Education, The Chinese University of Hong Kong, for providing the data in the application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sik-Yum Lee .

Editor information

Editors and Affiliations

Appendix: Full Conditional Distributions

Appendix: Full Conditional Distributions

The conditional distributions required by the Gibbs sampler in the posterior simulation of the integrated model will be presented in this appendix. We use p(∙) to denote the conditional distribution if the context is clear, and note that (Y obs, W obs, U mis, O) = U.

  1. (i)

    p(V ǀ9, a, Y obs, W obs, U mis, Ω1, Ω2, O) = p(V Čθ,U12): This conditional distribution is equal to a product of p(v gǀθ, U g, Ω1g, ω2g) with g = 1,…, G. For each gth term in this product, its conditional distribution is \(N\left[ {\mu _g^*,\sum _g^* } \right],\) where

    $$\mu _g^* = \sum _g^* \left\{ {{\mathbf{\psi }}_1^{ - 1} \sum\limits_{i = 1}^{N_g } {\left[ {{\mathbf{u}}_{gi} - {\mathbf{A}}_1 {\mathbf{c}}_{ugi} - \Lambda _1 \omega _{1gi} } \right] + {\mathbf{\psi }}_2^{ - 1} \left[ {{\mathbf{A}}_2 {\mathbf{c}}_{\upsilon g} + \Lambda _2 \omega _{2g} } \right]} } \right\},{\text{and}}\sum _g^* = \left({N_g {\mathbf{\psi }}_1^{ - 1} + {\mathbf{\psi }}_2^{ - 1} } \right)^{ - 1}.$$
    ((31))
  2. (ii)

    p1ǀθ, α, Y obs, W obs, U mis, Ω2, V, O) = p1ǀθ, U, Ω2, V) \( = \mathop \prod \limits_{g = 1}^G \mathop \prod \limits_{i = 1}^{N_g } \) p1gi ǀθ, v g , ω2g , u gi ), where p1gi ǀθ, v g , ω2g , u gi ) is proportional to

    $$\begin{array}{l}\exp \left[ - \frac{1} {2}\left\{ {{\mathbf{\xi }}_{1gi}^T {\mathbf{\Phi }}_1^{ - 1} {\mathbf{\xi }}_{1gi} + \left[ {{\text{u}}_{gi} - {\mathbf{v}}_g - {\mathbf{A}}_1 {\mathbf{c}}_{ugi} - {\mathbf{\Lambda }}_1 \omega _{1gi} } \right]^T {\mathbf{\psi }}_1^{ - 1}} \right.\right.\\ \qquad\qquad\times \left[ {{\mathbf{u}}_{gi} - {\mathbf{v}}_g - {\mathbf{A}}_1 {\mathbf{c}}_{ugi} - {\mathbf{\Lambda }}_1 \omega _{1gi} } \right] + \left[ {\eta _{1gi} - {\mathbf{B}}_1 {\mathbf{c}}_{1gi} - \prod _1 \eta _{1gi} - {\mathbf{\Gamma }}_1 {\mathbf{F}}_1 \left({{\mathbf{\xi }}_{1gi} } \right)} \right]^T\\ \qquad\qquad\left.\left.\times {\mathbf{\psi }}_{1\delta }^{ - 1} \left[ {\eta _{1gi} - {\mathbf{B}}_1 {\mathbf{c}}_{1gi} - {\mathbf{B}}_1 {\mathbf{c}}_{1gi} - \prod _1 \eta _{1gi} - {\mathbf{\Gamma }}_1 {\mathbf{F}}_1 \left({{\mathbf{\xi }}_{1gi} } \right)} \right] \right\} \right]. \end{array}$$
    ((32))
  3. (iii)

    p2ǀθ, α, Y obs, W obs, U mis, Ω1, V, O): This distribution has very similar form as in p(Ω.1 ǀ·) and (32), hence is not presented to save space.

  4. (iv)

    p(α, Y obsǀθ, W obs, U mis, Ω1, Ω2, V, O): To deal with the situation with little or no information about these parameters, the following noninformation prior distribution is used: pk) = p(a k,2,…, ak,bk−1) C, k = 1,…, s, where C is a constant. As (α, Y g) is independent with (α, Y h) for g ≠ h, and that Ψ 1 is diagonal, we have

    $$p\left({\alpha,{\mathbf{Y}}| \cdot } \right) = \mathop \prod \limits_{g = 1}^G p\left({\alpha _h,{\mathbf{Y}}_g | \cdot } \right) = \mathop \prod \limits_{g = 1}^G \mathop \prod \limits_{k = 1}^s p\left({\alpha _k,{\mathbf{Y}}_{gk} | \cdot } \right),$$
    ((33))

    where Y gk = [ygk1,…, ygkNg]. Let ψ1k be the kth diagonal element of Ψ 1, vgk be the kth element of v g, and Λ 1k be the kth row of Λ1, and I a (y) be an indicator function with value 1 if y is A and zero otherwise, p(α,Yǀ·) can be obtained from (33) and

    $$p\left({\alpha _k,y_{gki} | \cdot } \right) \propto \mathop \prod \limits_{i = 1}^{N_g } \Phi ^* \left\{ {\psi _{1k}^{ - 1/2} \left[ {y_{gki} - \upsilon _{gk} - \Lambda _{1k}^T \omega _{1gi} } \right]} \right\}I_{(\alpha _{k,z_{gki}},\alpha _{_{k,z_{gki} }} + 1]} \left({y_{gki} } \right).$$
    ((34))
    $$p\left({\omega _{gik,{\text{obs}}} |\theta,\omega _{1gi},d_{gik,{\text{obs}}} } \right) \sim \left\{ {\begin{array}{*{20}c} {N\left[ {{\mathbf{\Lambda '}}_{1k} \omega _{1gi},\psi _{1k} } \right]I_{\left({ - \infty,0} \right)} \left({\omega _{gik,{\text{obs}}} } \right),{\text{if}}d_{gik,} {\text{obs = 0}}} \\ {N\left[ {{\mathbf{\Lambda '}}_{1k} \omega _{1gi},\psi _{1k} } \right]I_{\left({0,\infty } \right)} \left({\omega _{gik,{\text{obs}}} } \right),{\text{if}}d_{gik,} {\text{obs = 1,}}} \\ \end{array} } \right.$$
    ((35))

    where n g,k is the number of d gki,obs in D k,obs and D k,obs is the kth row of D obs.

    $$\left[ {{\mathbf{u}}_{gi,{\text{mis}}} |\theta,\omega _{1gi} } \right]\mathop = \limits^D N\left[ {{\mathbf{v}}_g + {\mathbf{A}}_{1i,{\text{mis}}} {\mathbf{c}}_{ugi} + \Lambda _{1i,{\text{mis}}} \omega _{1gi},{\psi }_{1i}, {\text{mis}}} \right],$$
    ((36))

    where A 1i,misand ι1i,mis are submatrices of A 1 and ι1with rows that correspond to observed components deleted, and Ψ1i,mis is a submatrix of Ψ1 with the appropriate rows and columns deleted. (vii) p(θǀα, Y obs, W obs, Umis, Ω1, Ω2, V, O) = p(θǀ U, Ω1, Ω2):Letθ1 be the vector of unknown parameters in A 1, Λ1, and Ψ1, θ be the vector of unknown parameters in Π 1, Γ 1, Φ 1, and Ψ , θ2 be the vector of unknown parameters in A 2, Λ2, and Ψ2, and θ be the vector of unknown parameters in Π2, σ2, Φ2, and Ψ2δ.

For θ1, the following commonly used conjugate type prior distributions are used:

$$\begin{array}{*{20}c} {p\left({\psi _{1k}^{ - 1} } \right)\mathop = \limits^D Gamma\left[ {\alpha _{01\varepsilon k} } \right],} & {p\left({\Lambda _{1k} |\psi _{1k} } \right)} \\ \end{array} \mathop = \limits^D N\left[ {{\mathbf{\Lambda }}_{01k},\psi _{1k} {\mathbf{H}}_{01yk} } \right],$$
((37))

where \({\mathbf{A}}_{1k}^T,{\mathbf{\Lambda }}_{1k}^T \) are the row vectors that contain the unknown parameters in the kth row of A1 and A1, respectively;\(\alpha _{01\varepsilon k,} \beta _{01\varepsilon k,} {\mathbf{A}}_{01k,} {\mathbf{\Lambda }}_{01k,} {\mathbf{H}}_{01k,} \) and H 01yk are given hyper-parameters values. For k ≠ h, it is assumed that (ψ1k, Λ1 k) and (ψ1h, Λ1h) are independent. Let U¢ = {u giv gA 1 c ugi;i = 1,…, N g, g = 1,…, G and \({\mathbf{U}}_k^{*^T } \)be the kth row of U, Ω1 ={σ1gi; i =1… N g g = 1…G}

$$\begin{array}{*{20}c} {p\left({\psi _{1k}^{ - 1} | \cdot } \right)\mathop = \limits^D Gamma\left[ {2^{ - 1} N_g + \alpha _{01\varepsilon k},\beta _{1\varepsilon k} } \right]{\text{and}}} & {p\left({\Lambda _{1k} |\psi _{1k}, \cdot } \right)} \\ \end{array} \mathop = \limits^D N\left[ {{\mathbf{m}}_{1k},\psi _{1k} \sum _{1k} } \right].$$
((38))

Let C u = {c ugi; i = 1,…, N g, g = 1,…, G}, Û = {u gi—vg—Λ1ω1gi;i = 1,…, N g, g = 1,…, G}, and \({\mathbf{\tilde U}}_k^T \) be the feth row of \({\mathbf{\tilde U}},\tilde \sum _{1k} = \left({{\mathbf{H}}_{01k}^{ - 1} + {\mathbf{C}}_u {\mathbf{C}}_u^T } \right)^{ - 1},{\mathbf{\tilde m}}_{1k} = \tilde \sum _{1k} \left({{\mathbf{H}}_{01k}^{ - 1} {\mathbf{A}}_{01k} + {\mathbf{C}}_u {\mathbf{\tilde U}}_k } \right).\)

For θ1ω, it is assumed that Φ1 is independent of (Λ, :1s), where Λ1o = \(\left({{\mathbf{B}}_1^T,\prod _1^T,{\mathbf{\Gamma }}_1^T } \right)^T.\)Also, (Λ1ωk;, ω1δk) and (Λ1ωh, ω1δh) are independent, where Λ1ωk and ψ1δk are the kth row and diagonal element of Λ and ΨΨ 1,δ, respectively. The associated prior distribution of Φ1 is \(p\left({{\mathbf{\Phi }}_1^{ - 1} } \right)\mathop = \limits^D W\left[ {{\mathbf{R}}_{01,\rho 01,q12} } \right],\) where W[∙, ∙, q12] denotes the q 12-dimensional Wishart distribution, ρ01 and the positive definite matrix R 01 are given hyper-parameters. Moreover, the prior distribution of ψ1δk and Λ1ωak are

$$\begin{array}{*{20}c} {p\left({\psi _{1\delta k} } \right)\mathop = \limits^D Gamma\left[ {\alpha _{01\delta k},\beta _{01\delta k} } \right]{\text{and}}} & {p\left({\Lambda _{1\omega k} |\psi _{1\delta k} } \right)} \\ \end{array} \mathop = \limits^D N\left[ {{\mathbf{\Lambda }}_{01\omega k},\psi _{1\delta k} {\mathbf{H}}_{01\omega k} } \right],$$
((39))

where α01δk, Λ01ωk, and H 01ωk are given hyper-parameters. Let E 1 = (η1g1,…, η1gNg); g = 1,…, G},\({\mathbf{E}}_{1k}^T \)be the kth row of E 1, ϩ1 = {(ξ 1g1,…, ξ 1gNg); g = 1,…, G} and\({\mathbf{F}}_1^* = \left\{ {\left({{\mathbf{F}}_1^* \left({\xi _{1g1} } \right), \ldots,{\mathbf{F}}_1^* \left({\xi _{1gNg} } \right)} \right);g = 1, \ldots,G} \right\},\), in which \({\mathbf{F}}_1^* \left({\xi _{1g1} } \right) = \left({\eta _{1gi}^T,{\mathbf{F}}_1 \left({\xi _{1gi} } \right)^T } \right)^T,i = 1, \ldots,N_g,\), i = 1,…, N g, and it can be shown that for k = 1,…, q 11,

$$\begin{array}{*{20}c} {p\left({\psi _{1\delta k} | \cdot } \right)\mathop = \limits^D Gamma\left[ {2^{ - 1} N_g + \alpha _{01\delta k},\beta _{1\delta k} } \right]{\text{,}}} & {p\left({{\mathbf{\Lambda }}_{1\omega k} |\psi _{1\delta k}, \cdot } \right)} \\ \end{array} \mathop = \limits^D N\left[ {{\mathbf{m}}_{1\omega k},\psi _{1\delta k} \sum _{1\omega k} } \right],$$
((40))

where \(\sum _{1\omega k} = \left({{\mathbf{H}}_{01\omega k}^{ - 1} + {\mathbf{F}}_1^* {\mathbf{F}}_1^{*^T } } \right)^{ - 1},{\mathbf{m}}_{1\omega k} \left({{\mathbf{H}}_{01\omega k}^{ - 1} {\mathbf{\Lambda }}_{01\omega k} + {\mathbf{F}}_1^* {\mathbf{E}}_{1k} } \right),\) and\(\beta _{1\delta k} = \beta _{01\delta k} + \frac{1} {2}\left({{\mathbf{E}}_{1k}^T {\mathbf{E}}_{1k} - {\mathbf{m}}_{{\text{l}}\omega {\text{k}}}^T \sum _{{\text{l}}\omega {\text{k}}}^{ - 1} {\mathbf{m}}_{{\text{l}}\omega {\text{k}}} + \Lambda _{01\omega k}^T {\mathbf{H}}_{01\omega k} } \right).\)be the inverted Wishart distribution, the conditional distribution relating to Φ1 is given by

$$p\left({\Phi _1 |\Xi _1 } \right)\mathop = \limits^D IW\left[ {\left({\Xi _1 \Xi _1^T + {\mathbf{R}}_{01}^{ - 1} } \right),\sum\limits_{g = 1}^G {N_g + \rho _{01},q_{12} } } \right].$$
((41))

Conditional distributions involved in θ2 are derived similarly on the basis of the following independent conjugate type prior distributions: for k = 1,…, p, and

$$\begin{array}{l} {\begin{array}{ll} {p\left({\psi _{1\varepsilon k}^{ - 1} } \right)\mathop = \limits^D Gamma\left[ {\alpha _{02\varepsilon k},\beta _{02\varepsilon k} } \right],} & {p\left({\Lambda _{2k} |\psi _{2k} } \right)} \\ \end{array} \mathop = \limits^D N\left[ {{\mathbf{\Lambda }}_{02k},\psi _{2k} {\mathbf{H}}_{02yk} } \right],} \\ {p\left({{\mathbf{A}}_{2k} } \right)\mathop = \limits^D N\left[ {{\mathbf{A}}_{02k},{\mathbf{H}}_{02k} } \right],k = 1, \ldots,p,} \\ \end{array} $$

where \({\mathbf{A}}_{2k}^T \) and \({\mathbf{\Lambda }}_{2k}^T \) are the vectors that contain unknown parameters in the kth rows of A2 and Λ2, respectively; \(\alpha _{02\varepsilon k,} \beta _{02k,} {\mathbf{A}}_{02k,} {\mathbf{\Lambda }}_{02k,} {\mathbf{H}}_{02k,} \) and \({\mathbf{H}}_{02yk} \) are given hyperparameters.

Similarly, conditional distributions involved in θ are derived on the basis of the following conjugate type distributions: for k = 1,…, q21,

$$\begin{array}{*{20}c} {\begin{array}{*{20}c} {p\left({\psi _{2\delta k}^{ - 1} } \right)\mathop = \limits^D Gamma\left[ {\alpha _{02\delta k},\beta _{02\delta k} } \right],} & {p\left({\Lambda _{2\omega k} |\psi _{2\delta k} } \right)} \\ \end{array} \mathop = \limits^D N\left[ {{\mathbf{\Lambda }}_{2\omega k},\psi _{2\delta k} } \right]\mathop = \limits^D N\left[ {{\mathbf{\Lambda }}_{02\omega k},\psi _{2\delta k} {\mathbf{H}}_{02\omega k} } \right],} \\ {p\left({\Phi _2^{ - 1} } \right)\mathop = \limits^D W\left[ {{\mathbf{R}}_{02},\rho _{02},q_{22} } \right],} \\ \end{array} $$

where\({\mathbf{\Lambda }}_{2\omega } = \left({B_2^T,\prod _2^T,{\mathbf{\Gamma }}_2^T } \right)^T \) and \({\mathbf{\Lambda }}_{2\omega k} \) is the vector that contains the unknown parameters in the kth row of Λ. As these conditional distributions are similar to those in (38), (40) and (41), they are not presented to save space.

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, SY., Song, XY. (2008). Bayesian Model Comparison of Structural Equation Models. In: Dunson, D.B. (eds) Random Effect and Latent Variable Model Selection. Lecture Notes in Statistics, vol 192. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76721-5_6

Download citation

Publish with us

Policies and ethics