Skip to main content

Abstract

Every chemical reaction or interaction causes a change in refractive index, including such bioconjugate interactions as antibody/antigen, DNA hybridization and enzyme/substrate interactions. Interferometry is an optical method for measuring refractive index changes. With the proper choice of sensing film, an interferometer can identify and quantify the presence of a biological moiety. An interferometer compares optically two almost equivalent light paths ā€“ one that interrogates the refractive index change caused by a bioconjugate interaction, and the other that serves as a reference that cancels out any nonspecific interactions. Interferometers have the capability of detecting refractive index changes of 10-7, which corresponds to ppb concentrations of small molecules, pg/mL concentrations of toxins and proteins, and 100sā€“1000s of whole cells, viruses and spores. Several optical interferometric designs are described. Most configurations combine a bioconjugate reaction isolated on a rigid support with a long interaction length of mm to cm to achieve high sensitivity. The most common interferometric configuration utilizes a planar optical waveguide. The evanescent field associated with a wave-guided beam extends above the waveguide surface where the bioreceptor is immobilized. The bioconjugate interaction perturbs the propagating beam and the extent of this perturbation is measured by comparing the phase of the light traveling along the sensing channel with that traveling along a reference channel that is not functionalized with the bioreceptor. The phase change is measured by optically combining the two beams at the output of the interferometer to create an interference pattern, a series of dark and light fringes that is caused by constructive and destructive interference. By proper choice of receptor molecule and calibration, both the identity and the quantity of a specific bioentity can be measured with the interferometric biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akkin T, Dave DP, Milner TE and Rylander III HG (2002) Interferometric Fiber-Based Optical Biosensor to Measure Ultra-SmallChanges in Refractive Index. SPIE Proc. 4616:9

    ArticleĀ  Google ScholarĀ 

  • Alieva EV and Konopsky VN (2004) Biosensor Based on Surface Plasmon Interferometry Independent on Variations of Liquidā€™s Refraction Index. Sens. Actuators B 99:90ā€“97

    ArticleĀ  Google ScholarĀ 

  • Brandenburg A (1997) Differential Refractometry by anIntegrated-Optical Young Interferometer. Sens. Actuators B38:266ā€“271

    ArticleĀ  Google ScholarĀ 

  • Brandenburg A, Krauter R, Kunzel M and Schulte H (2000) Interferometric Sensors for Detection of Surface-Bound Bioreactions.Appl. Opt. 39:6396ā€“6405

    ArticleĀ  Google ScholarĀ 

  • Brosinger F, Freimuth H, Lacher M, Ehrfeld W, Gedig E, Katerkamp A,Spencer F, Cammann K (1997) A Label-Free Affinity Sensor withCompensation of Unspecific Protein Interaction by a Highly SensitiveIntegrated Optical Machā€“Zehnder Interferometer on Silicon. Sens. Actuators B 44:350ā€“355

    Google ScholarĀ 

  • Campbell DP (2005) Interferometric Sensors for Monitoring OurEnvironment. LAT Conf. Proc., St. Petersburg, Russia

    Google ScholarĀ 

  • Campbell DP, Gottfried DS and Cobb-Sullivan JM (2004) Groundwater Monitoring of VOCs with an Interferometric Optical Waveguide Sensor, SPIE Proc. 5586:136

    ArticleĀ  Google ScholarĀ 

  • Campbell DP, Gottfried DS, Scheffter SM, Beck MC and Halpern MD (2003) Interferometric Optical Waveguide Sensor for Anthrax SporeDetection. ACS National Meeting Proc., New York

    Google ScholarĀ 

  • Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L and Whitesides GM (2000) Surveying for Surfaces that Resist the Adsorption of Proteins. J. Am. Chem. Soc. 122:8303ā€“8304

    ArticleĀ  Google ScholarĀ 

  • Chiu M-H, Wang S-F and Chang R-S (2005) D-Type Fiber Biosensor Based on Surface Plasmon Resonance Technology and Heterodyne Interferometry. Opt. Lett. 30:233ā€“235

    ArticleĀ  Google ScholarĀ 

  • Choquette SJ and Locascio-Brown L (1984) Thermal Detection of Enzyme-Labelled Antigen-Antibody Complexes Using Fiber-Optic Interferometry. Sens Actuators B 22:89ā€“96

    ArticleĀ  Google ScholarĀ 

  • Cross G, Ren Y and Freeman NJ (1999) Youngā€™s Fringes from Vertically Integrated Slab Waveguides: Applications to Humidity Sensing. J. Appl. Phys. 86:6483ā€“6499

    ArticleĀ  Google ScholarĀ 

  • Cross GH, Reeves AA, Brand S, Popplewell JF, Peel LL, Swann MJ and Freeman NJ (2003) A New Quantitative Optical Biosensor for Protein Characterization. Biosensors and Bioelectronics 19:383ā€“390

    Google ScholarĀ 

  • Dancil K-PS, Greiner DP and Sailor MJ (1999) A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface. J. Am. Chem. Soc. 121:7925ā€“7930

    ArticleĀ  Google ScholarĀ 

  • DeStefano L, Moretti L, Lamberti A, Longo O, Rocchia M, Rossi AM, Arcari P and Rendina I (2004) Optical Sensors for Vapors, Liquids, and Biological Molecules Based on Porous Silicon Technology. IEEE Trans. Nanotechnology, 3:49ā€“54

    ArticleĀ  Google ScholarĀ 

  • Drapp B, Piehler J, Brecht A, Granglitz G, Luff BJ, Wilkinson JS and Ingenhoff J (1997) Integrated Optical Mach-Zehnder Interferometers as Simazine Immunoprobes. Sens. Actuators B 38:277ā€“282

    ArticleĀ  Google ScholarĀ 

  • Fischer K and Muller J (1992) Sensor Application of SiON Integrated Optical Waveguides on Silicon. Sens. Actuators B 9:209ā€“213

    Google ScholarĀ 

  • Fratamico P, Strobaugh T, Medina M and Gehring A (1998) Detection of Escherichia coli 0157:H7 Using a Surface Plasmon Resonance Sensor. Biotechnol. Tech. 12:571ā€“576

    ArticleĀ  Google ScholarĀ 

  • Gato L and Srivastava R (1996) Time-Dependent Surface-Index Change in Ion-Exchanged Waveguides. Opt. Commun. 123:483ā€“486

    ArticleĀ  Google ScholarĀ 

  • Gauglitz GA, Brecht A, Kraus G and Nahm W (1993) Chemical and Biochemical Sensors Based on Interferometry at Thin (Multi-) Layers. Sens. Actuators B. 11:21ā€“27

    ArticleĀ  Google ScholarĀ 

  • Gottfried DS (2006) Private communication

    Google ScholarĀ 

  • Grace KM, Shrouf K, Honkanen S, Agras P, Katila P, Leppihalme M, Johnson RG, Yang X, Swanson B and Peyghambarian N (1997) A Phase-Locked Fibre Interferometer with Intensity Noise Compensation. Electronic Lett. 33:1650ā€“1651

    ArticleĀ  Google ScholarĀ 

  • Grigorenko AN, Nikitin PI and Kabashin AV (1999) Phase Jumps and Interferometric Surface Plasmon Resonance Imaging. Appl. Phys. Lett. 75:3917ā€“3919

    ArticleĀ  Google ScholarĀ 

  • Hartman NF (1990) Optical Sensing Apparatus and Method. U.S. Patent No. 4 940 328

    Google ScholarĀ 

  • Hartman NF (1997) Integrated Optic Interferometric Sensor. U.S. Patent No. 5623561

    Google ScholarĀ 

  • Hartman NF, Campbell DP and Gross M (1988) Multimode Waveguide Chemical Sensor. Proc. IEEE-LEOS ā€™88, 298

    Google ScholarĀ 

  • Hartman NF, Cobb JM and Edwards JG (1998) Optical System-on-a-Chip for Chemical and Biochemical Sensing: the Platform. SPIE Proc. 3537:302ā€“309

    Google ScholarĀ 

  • Heideman RG (1993) PhD thesis, University of Twente, Netherlands

    Google ScholarĀ 

  • Heideman RG, Kooyman RPH and Greve J (1994) Immunoreactivity of Adsorbed Anti Human Chorionic Gonadotropin Studied with an Optical Waveguide Interferometric Sensor. Biosensors and Bioelectronics 9:33ā€“43

    ArticleĀ  Google ScholarĀ 

  • Heideman RG, Veldhuis GJ, Jager EWH and Lambeck PV (1996) Fabrication and Packaging of Integrated Chemo-Optical Sensors. Sens. Actuators B 35:234ā€“240

    ArticleĀ  Google ScholarĀ 

  • Helmers HP, Greco R, Rustad R, Kherrat R, Bouvier G and Benech P (1996) Performance of a Compact, Hybrid Optical Evanescent-Wave Sensor for Chemical and Biological Applications, Appl. Opt. 35:676ā€“680

    ArticleĀ  Google ScholarĀ 

  • Hermanson GT (1996) Bioconjugate Techniques. San Diego, CA: Academic Press, USA

    Google ScholarĀ 

  • Heuberger K and Lukosz W (1986) Embossing Technique for Fabricating Surface Relief Gratings on Hard Oxide Waveguides. Appl. Optics 25:1499ā€“1504

    Google ScholarĀ 

  • Ho HP, Lam WW and Wu SY (2002) Surface Plasmon Resonance Sensor Based on the Measurement of Differential Dhase. Rev. Sci. Instr. 73:3534ā€“3539

    ArticleĀ  Google ScholarĀ 

  • Horner SC, Mace CR, Rothberg LJ and Miller BL (2006) A Proteomic Biosensor for Enteropathogenic E. coli. Biosensors and Bioelectronics 21:1659ā€“1663

    ArticleĀ  Google ScholarĀ 

  • Horvath R, Linvold LR and Larsen NB (2002a) Reverse-Symmetry Waveguides: Theory and Fabrication. Appl. Phys. B. 74:383ā€“393

    ArticleĀ  Google ScholarĀ 

  • Horvath R, Pedersen HC and Larsen NB (2002b) Demonstration of Reverse Symmetry Waveguide Sensing in Aqueous Solutions. Appl. Phys. Lett. 81:2166ā€“2168

    ArticleĀ  Google ScholarĀ 

  • Horvath R, Pedersen HC, Skivesen N, Selmeczi D and Larsen NB (2003) Optical Waveguide Sensor for On-Line Monitoring of Bacteria. Opt. Lett. 28:1233ā€“1235

    Google ScholarĀ 

  • Hradetzky D and Brandenburg A (2000) Planar Interferometric Sensor for Refractometric and Immunosensing Applications. Europtrode V 179

    Google ScholarĀ 

  • Hsiu F-M, Chen S-J, Tsai C-H, Tsou C-Y, Su Y-D, Lin G-Y, Huang K-T, Chyou J-J, Ku W-C, Chiu S-K and Tzeng C-M (2002) Surface Plasmon Resonance Imaging System with Mach-Zehnder Phase-Shift Interferometry for DNA Micro-Array Hybridization. SPIE Proc. 4819:167

    ArticleĀ  Google ScholarĀ 

  • Kabashin AV and Nikitin PI (1997) Interferometer Based on a Surface-Plasmon Resonance for Sensor Applications. Quantum Electronics 27:653ā€“654

    ArticleĀ  Google ScholarĀ 

  • Kersey AD, Marrone MJ and Davis MA (1990) Polarization Insensitive Fiber Optic Michelson Interferometer. SPIE Proc. 1367:2

    ArticleĀ  Google ScholarĀ 

  • Kinrot N (2006) Investigation of a Periodically Segmented Waveguide Fabry-Perot Interferometer for Use as a Chemical/Biosensor. J. Lightwave Tech. 24:2139ā€“2145

    ArticleĀ  Google ScholarĀ 

  • Koster TM, Posthuma NE and Lambeck PV (2000) Fully Integrated Optical Polarimeter. Europtrode V, 179

    Google ScholarĀ 

  • Koubova V, Brynda E, Karasova L, Skvor J, Homola J, Dostalek J, Tobiska P and Rosicky J (2001) Detection of Foodborne Pathogens Using Surface Plasmon Resonance Biosensors. Sens. Actuators B. 74:100ā€“105

    ArticleĀ  Google ScholarĀ 

  • Lechuga LM, Sepulveda B, Llobera A, Calle A and Dominguez C (2003) Integrated Optical Silicon IC Compatible Nanodevices for Biosensing Applications, SPIE Proc. 5119:140

    ArticleĀ  Google ScholarĀ 

  • Lillie JJ, Thomas MA, Denis KA, Jokerst NM, Henderson C and Ralph SE (2004) Modal Pattern Analysis and Experimental Investigation of Multimode Interferometric Sensing: a Path to a fully Integrated Silicon-CMOS-Based Chem/Bio Sensors. 2004 IEEE LEOS Annual Meeting Conference Proceedings, LEOS 2004:352

    Google ScholarĀ 

  • Lin VS-Y, Motesharei K, Dancil K-PS, Sailor MJ and Ghadiri MR (1997) A Porous Silicon-Based Optical Interferometric Biosensor. Science 278:840ā€“843

    Google ScholarĀ 

  • Luff BJ, Wilkinson JS, Piehler J, Hollenback U, Ingenhoff J and Fabricius N (1998) Integrated Optical Mach-Zehnder Biosensor. J. Lightwave Tech. 16:583ā€“592

    ArticleĀ  Google ScholarĀ 

  • Lukosz W (1995) Integrated Optical Chemical and Direct Biochemical Sensors. Sens. Actuators B 29:37ā€“50

    ArticleĀ  Google ScholarĀ 

  • Lukosz W and Tiefenthaler K (1983) Integrated Optical Input Couplers as Biochemical Sensors. IEEE Conf. Proc., 2nd Eur. Conf. Integrated Optics, Florence 227:152

    Google ScholarĀ 

  • Lukosz W and Tiefenthaler K (1989) Sensitivity of Grating Couplers as Integrated-Optical Chemical Sensors. J. Opt. Soc. Am. B 6:209ā€“220

    Google ScholarĀ 

  • Lukosz W and Tiefenthaler K (1988) Sensitivity of integrated optical grating and prism couplers as Biochemical sensors. Sens. Actuators B 15:273ā€“284

    ArticleĀ  Google ScholarĀ 

  • Lukosz W, NellenPM, Stamm C and Weiss P (1990) Output Grating Couplers on Planar Waveguides as Integrated Optical Chemical Sensors. Sens. Actuators B 1:585ā€“588

    Google ScholarĀ 

  • Lukosz W, Stamm C, Moser HR, Ryf R and Dubendorfer J (1997) Difference Interferometer with New Phase-Measurement Method as Integrated-Optical Refractometer, Humidity Sensor and Biosensor. Sens. Actuators B 38:316ā€“323

    ArticleĀ  Google ScholarĀ 

  • Manning C, Gross MJ, Hanashaw T, Kirlin RL and Samuels A (2004) Compact Interferometers for Chemical and Biological Agent Detection. SPIE Proc. 5268:125

    Google ScholarĀ 

  • Millar CA and Hutchins RH (1978) Manufacturing Tolerances for Silver-Sodium Ion-Exchange Planar Optical Waveguides. J. Phys. D; Appl. Phys. 11: 1567ā€“1576

    ArticleĀ  Google ScholarĀ 

  • Murata T, Ishizawa H, Motoyama I and Tanaka A (2006) Preparation of High-Performance Optical Coatings with Fluoride Nanoparticle Films Made from Autoclaved Sols. Appl. Optics 45:1465ā€“1468

    ArticleĀ  Google ScholarĀ 

  • Nellen PM, Tiefenthaler K and Lukosz W (1988) Integrated optical Input Grating Couplers as Biochemical Sensors. Sens. Actuators B 15:285ā€“295

    ArticleĀ  Google ScholarĀ 

  • Nikitin PI, Beloglazov AA, Kochergin VE, Valeiko MV and Ksrenevich TI (1999) Surface Plasmon Resonance Interferometry for Biological and Chemical Sensing. Sens. Actuators B 54:43ā€“50

    ArticleĀ  Google ScholarĀ 

  • Nikitin PI, Gorshkov BG, Nikitin EP and Ksenevich TI (2005) Picoscope, a new label-free biosensor. Sens. Actuators B. 111ā€“112:500ā€“504

    ArticleĀ  Google ScholarĀ 

  • Nikitin PI, Gorshkov BG, Valeiko MV and Rogov SI (2000a) Spectral-Phase Interference Method for Detecting Biochemical Reactions on a Surface. Quantum Electronics 30:1099ā€“1104

    ArticleĀ  Google ScholarĀ 

  • Nikitin PI, Gorshkov BG, Valeiko MV, Savchuk AI, Savchuk OA, Steiner G, Kuhne C, Huebner A and Salzer R (2000b) Surface Plasmon Resonance Interferometry for Micro-Array Biosensing. Sens. Actuators B 85:189ā€“193

    ArticleĀ  Google ScholarĀ 

  • Nikitin PI, Valeiko MV and Gorshkov BG (2003) New direct Optical Biosensors for Multi-Analyte Detection. Sens. Actuators B. 90: 46ā€“51

    ArticleĀ  Google ScholarĀ 

  • Nishihara H, Haruna M and Suhara T (1985) Optical Integrated Circuits, Chapter 2. New York: McGraw-Hill p 226.

    Google ScholarĀ 

  • Prieto F, Sepulveda B, Calle A, Llobera A, Dominguez C, Abad A, Montoya A and Lechuga LM (2003a) Integrated Optical Interferometric Nanodevice Based on Silicon Technology for Biosensor Applications. Nanotechnology 14:907ā€“912

    ArticleĀ  Google ScholarĀ 

  • Prieto F, Sepulveda B, Calle A, Llobera A, Dominguez C and Lechuga LM (2003b) Integrated Machā€“Zehnder Interferometer Based on ARROW Structures for Biosensor Applications. Sens. Actuators B 92:151ā€“158

    ArticleĀ  Google ScholarĀ 

  • Ramos BL, Choquette SJ and Nell Jr. NF (1986) Embossable Grating Couplers for Planar Waveguide Optical Sensors. Anal. Chem. 68:1245ā€“1249

    ArticleĀ  Google ScholarĀ 

  • Ranganath TR and Wang S (1977) Ti-Diffused LiNbO3 Branched Waveguide Modulators: Performance and Design, IEEE J. Quantum Electron. QE-13: 290

    ArticleĀ  Google ScholarĀ 

  • Schipper EF, Brugman AM, Dominguez C, Lechuga LM, Kooyman RPH and Greve J (1997) The Realization of an Integrated Mach-Zehnder Waveguide Immunosensor in Silicon Technology. Sens. Actuators B 40: 147ā€“153

    ArticleĀ  Google ScholarĀ 

  • Schmitt K, Schirmer B and Brandenburg A (2004) Development of a Highly Sensitive Interferometric Biosensor. SPIE Proc. 5461:22

    ArticleĀ  Google ScholarĀ 

  • Schneider BH, Dickinson EL, Vach MD, Hoijer JV and Howard LV (2000) Optical Chip Immunoassay for hCG in Human Whole Blood. Biosensors Bioelectronics 15:597ā€“604

    Google ScholarĀ 

  • Schneider BH, Edwards JG and Hartman NF (1997) Hartman Interferometer: Versatile Integrated Optic Sensor for Label-Free, Real-Time Quantification of Nucleic Acids, Proteins, and Pathogens. Clinical Chem. 43: 1757ā€“1808

    Google ScholarĀ 

  • Seo KH, Brackett RE, Hartman NF and Campbell DP (1999) Development of a Rapid Response Biosensor for Detection of Salmonella Typhimurium. J. Food Protection 62:431ā€“437

    Google ScholarĀ 

  • Sohn H, LetantS, Sailor MJ and Trogler WC (2000) Detection of Fluorophosphonate Chemical Warfare Agents by Catalytic Hydrolysis with a Porous Silicon Interferometer. J. Am. Chem. Soc.,122:5399ā€“5400

    Google ScholarĀ 

  • Stamm C and Lukosz W (1993) Integrated Optical Difference Interferometer as Refractometer and Chemical Sensor. Sens. Actuators B 11:177ā€“181

    ArticleĀ  Google ScholarĀ 

  • Stamm C and Lukosz W (1994) Integrated Optical Difference Interferometer as Biochemical Sensor. Sens. Actuators B 18:183ā€“188

    ArticleĀ  Google ScholarĀ 

  • Stamm C, Dangel R and Lukosz W (1998) Biosensing with the Integrated-Optical Difference Interferometer: Dual-wavelength operation. Opt. Commun. 153: 347ā€“359.

    Google ScholarĀ 

  • Su Y-D, S-J Chen and Yeh T-L (2005) Common-Path Phase-Shift Interferometry Surface Plasmon. Resonance Imaging System. Opt. Lett. 30:1488ā€“1490

    ArticleĀ  Google ScholarĀ 

  • Tiefenthaler K and Lukosz W (1984) Integrated Optical Switches and Gas Sensors. Optics Lett. 9:137ā€“139

    Google ScholarĀ 

  • Tiefenthaler K and Lukosz W (1985) Grating Couplers as Integrated Optical Humidity and Gas Sensors. Thin Solid Films 126:205ā€“211

    ArticleĀ  Google ScholarĀ 

  • Varma MM, Peng L, Regnier FE and Notle DD (2005) Label-Free Multi-Analyte Detection Using a Bio-CD. SPIE Proc. 5699:503

    ArticleĀ  Google ScholarĀ 

  • Wagner EK and Hewlett MJ (2004) Basic Virology. Blackwell, Malden Massachussetts, p 125

    Google ScholarĀ 

  • Walker RG and Wilkinson CDW (1983) Integrated Optical Ring Resonators Made by Silver Ion-exchange in Glass. Appl. Optics 22:1029ā€“1035

    Google ScholarĀ 

  • Watts H, Lowe C and Pollard-Knight D (1994) Optical Biosensor for Monitoring Microbial Cells. Anal. Chem. 66:2465ā€“2470

    ArticleĀ  Google ScholarĀ 

  • Weisser M, Tovar G, Mittler-Neher S, Knoll W, Brosinger F, Greimuth H, Lacher M and Ehrfeld W (1999) Specific Bio-Recognition Reactions Observed with an Integrated Machā€“Zehnder Interferometer. Biosensors and Bioelectronics 14:405ā€“411

    ArticleĀ  Google ScholarĀ 

  • Xu J, Suarez D and Gottfried DS (2007) Detection of Avian Influenza Virus Using an Interferometric Biosensor. Anal. Bioanal Chem. 389:1193ā€“1199

    ArticleĀ  Google ScholarĀ 

  • Yeom S, Moon I and Javidi B (2006) Real-Time 3D Sensing, Visualization and Recognition of Dynamic Biological Micro-Organisms. IEEE Proc. 94:550ā€“566

    ArticleĀ  Google ScholarĀ 

  • Ymeti A, Greve J, Laqmbeck PV, Wink T, van Hovell SWFM, Beumer TAM, Wijn RR, Heideman RG, Subramaniam V and Kanger JS (2007) Fast, Ultrasensitive Virus Detection Using a Young Interferometer Sensor. Nano Lett. 7:394ā€“397

    ArticleĀ  Google ScholarĀ 

  • Ymeti A, Kanger JS, Greve J, Besselink GAJ, Lambeck PV, Wijn R and Heideman RG (2005) Integration of Microfluidics with a Four-Channel Integrated Optical Young Interferometer Immunosensor. Biosensors and Bioelectronics 20:1417ā€“1421

    ArticleĀ  Google ScholarĀ 

  • Ymeti A, Kanger JS, Greve J, Lambeck PV, Wijn R and Heideman RG (2003) Realization of a Multichannel Integrated Young Interferometer Chemical Sensor. Appl. Opt. 42:5649ā€“5660

    ArticleĀ  Google ScholarĀ 

  • Ymeti A, Kanger JS, Wijn R, Lembeck PV and Greve J (2002) Development of a Multichannel Integrated Interferometer Immmunosensor. Sens. Actuators B 83:1ā€“7

    ArticleĀ  Google ScholarĀ 

  • Young T (1804) The Bakerian Lecture: Experiments and Calculations Relative to Physical Optics, Phil. Trans. R. Soc. 94:1

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Campbell, D.P. (2008). Interferometric Biosensors. In: Zourob, M., Elwary, S., Turner, A. (eds) Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75113-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75113-9_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75112-2

  • Online ISBN: 978-0-387-75113-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics