Skip to main content

Pancreas Biology, Pathology, and Tissue Engineering

  • Chapter
  • First Online:
Strategies in Regenerative Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amrani A et al. (2000) IL-1, IL-1 and IFN- mark -cells for Fas-dependent destruction by diabetogenic CD4+ T lymphocytes. J Clin Invest 105:459–468

    Article  CAS  Google Scholar 

  • Atkinson MA, Maclaren NK (1994) Mechanisms of Disease – The Pathogenesis of Insulin-Dependent Diabetes-Mellitus. New England Journal of Medicine 331: 1428–1436

    Google Scholar 

  • Baeyens L et al. (2006) Ngn3 expression during postnatal in vitro beta cell neogenesis induced by the JAK/STAT pathway. Cell Death Differ 13:1892–1899

    Article  CAS  Google Scholar 

  • Blyszczuk P et al. (2003) Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA 100:998–1003

    Article  CAS  Google Scholar 

  • Blyszczuk P et al. (2004) Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. Int J Dev Biol 2004 48:1095–1104

    Article  CAS  Google Scholar 

  • Boitard C et al. (1997) Immune mechanisms leading to type 1 insulin-dependent diabetes mellitus. Horm Res 48:58–63

    Article  CAS  Google Scholar 

  • Bouwens L, De Blay E, (1996) Islet morphogenesis and stem cell markers in rat pancreas. J Histochem Cytochem 44:947–951

    Article  CAS  Google Scholar 

  • Bouwens L, Rooman I (2005) Regulation of pancreatic beta-cell mass. Physiol Rev 85:1255–1270

    Article  CAS  Google Scholar 

  • Bouwens L, Lu GW, De Krijger R (1997) Proliferation and differentiation in the human fetal endocrine pancreas. Diabetologia 40:398–404

    Article  CAS  Google Scholar 

  • Buchanan TA, Xiang AH, Peters RK (2002) Preservation of pancreatic B-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 51: 2796–2803

    Article  CAS  Google Scholar 

  • Butler AE et al. (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with Type 2 diabetes. Diabetes 52: 102–110

    Article  CAS  Google Scholar 

  • Chervonsky AV et al. (1997) The role of Fas in autoimmune diabetes. Cell 89:17–24

    Article  CAS  Google Scholar 

  • Cnop M et al. (2005) Mechanisms of pancreatic beta-cell death in Type 1 and Type 2 diabetes. Diabetes, Suppl. 2:S97–S107

    Google Scholar 

  • Dabeva MD, Hurston E, Sharitz DA (1995) Transcription factor and liver-specific mRNA expression in facultative epithelial progenitor cells of liver and pancreas. Am J Pathol 147:1633–1648

    CAS  Google Scholar 

  • D'Amour KA et al. (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    Article  Google Scholar 

  • Deramaudt TB et al. (2006) The PDX1 Homeodomain transcription factor negatively regulates the pancreatic ductal cell-specific keratin 19 promoter. J Biol Chem 281:38385–38395

    Article  CAS  Google Scholar 

  • Donath MY, Halban PA (2004) Decreased B-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47:581–589

    Article  CAS  Google Scholar 

  • Dor Y (2006) β-Cell proliferation is the major source of new pancreatic beta cells. Nat Clin Pract Endocrinol Metab 2:242–243

    Article  Google Scholar 

  • Drucker DJ (1998) Glucagon-like peptides. Diabetes 47:159–169

    Article  CAS  Google Scholar 

  • Durbin RJ (2004) Thiazolidinedione therapy in the prevention/delay of type 2 diabetes in patients with impaired glucose tolerance and insulin resistance. Diabetes Obes Metab 6:280–285

    Article  CAS  Google Scholar 

  • Edlund H (1998) Transcribing pancreas. Diabetes 47:1817–1823

    Article  CAS  Google Scholar 

  • Eizirik DL, Darville MI (2002) Beta cell apoptosis and defense mechanisms: lessons from type 1 diabetes. Diabetes 50:S64–S69

    Article  Google Scholar 

  • Elghazi L et al. (2002) Role for FGFR2IIIb-mediated signals in controlling pancreatic endocrine progenitor cell proliferation. Proc Natl Acad Sci USA 99:3884–3889

    Article  CAS  Google Scholar 

  • Farilla L, Lui H, Bertolotto C (2002) Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 143:4397–4408

    Article  CAS  Google Scholar 

  • Finegood DT, McArthur MD, Kojwang D (2001) Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes 50:1021–1029

    Article  CAS  Google Scholar 

  • Fodor A et al. (2006) Adult rat liver cells transdifferentiated with lentiviral IPF1 vectors reverse diabetes in mice: an ex vivo gene therapy approach. Diabetologia [Epub ahead of print].

    Google Scholar 

  • Fodor et al (2007) Jan;50(1):121–30. Epub 2006 Nov 28

    Google Scholar 

  • Foulis AK et al. (1997) A search for evidence of viral infection in pancreases of newly diagnosed patients with IDDM. Diabetologia 401:53–56

    Article  Google Scholar 

  • Gao R et al. (2005) In vitro neogenesis of human islets reflects the plasticity of differentiated human pancreatic cells. Diabetologia 48:2296–2304

    Article  CAS  Google Scholar 

  • Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14:619–633

    CAS  Google Scholar 

  • Habener JF, Kemp DM, Thomas MK (2005) Minireview: transcriptional regulation in pancreatic development. Endocrinology 146.

    Google Scholar 

  • Hanke J (2000) Apoptosis and occurrence of Bcl-2, Bak, Bax, Fas and FasL in the developing and adult endocrine pancreas. Anat Embryol 202:303–312

    Article  CAS  Google Scholar 

  • Ianus A et al. (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850

    CAS  Google Scholar 

  • Imagawa A et al. (2001) Pancreatic biopsy as a procedure for detecting in situ autoimmune phenomena in type 1 diabetes: close correlation between serological markers and histological evidence of cellular autoimmunity. Diabetes 50:1269–1273

    Article  CAS  Google Scholar 

  • Janson J et al. (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48:491–498

    Article  CAS  Google Scholar 

  • Jonsson J et al. (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371: 606–609

    Article  CAS  Google Scholar 

  • Juhl CB, Schmitz O, Pincus S (2000) Short-term treatment with GLP-1 increases pulsatile insulin secretion in type II diabetes with no effect on orderliness. Diabetologia 43:583–588

    Article  CAS  Google Scholar 

  • Kagi D et al. (1996) Development of insulitis without diabetes in transgenic mice lacking perforin-dependent toxicity. J Exp Med 183:2143–2152

    Article  CAS  Google Scholar 

  • Kahn SE (2003) The relative contributions of insulin resistance and B-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46:3–19

    Article  CAS  Google Scholar 

  • Kahn SE, Andrikopoulos S, Verchere CB (1999) Islet amyloid: A long recognized but underappreciated pathological feature of Type 2 diabetes. Diabetes 48:241–253

    Article  CAS  Google Scholar 

  • Kaiser N, Leibowitz G, Nesher R (2003) Glucotoxicity and B-cell failure in Type 2 diabetes mellitus. J Pediatr Endocrinol Metab 16:5–22

    Article  CAS  Google Scholar 

  • Kawaguchi Y, et al. (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 3. 2:128–134

    Article  Google Scholar 

  • Kay TWH, et al. (2000) The beta cell in autoimmune diabetes: many mechanisms and pathways of loss. Trends Endocrinol Metab 11:11–15

    Article  CAS  Google Scholar 

  • Kim S et al. (2006) Analysis of donor and isolation-related factors of successful isolation of human islet of langerhans from human cadaveric donors. Transplantation Proceedings 37:3402–3403

    Article  Google Scholar 

  • Kloppel G et al. (1985) Islet pathology and the pathogenesis of Type 2 diabetes revisted. Surv Synth Pathol Res 4:110–125

    CAS  Google Scholar 

  • Koizumi M, et al. (2004) Hepatic regeneration and enforced PDX-1 expression accelerate transdifferentiation in liver. Surgery 136:449–457

    Article  Google Scholar 

  • Kolb H, Mandrup-Poulsen T (2005) An immune origin of type 2 diabetes. Diabetologia 48:1038–1050

    Article  CAS  Google Scholar 

  • Kreuwel HT et al. (1999) Comparing the relative role of perforin/granzyme vs Fas/Fas ligand cytotoxic pathways in CD8+ T cell-mediated insulin dependent diabetes mellitus. J Immunol 163:4355–4351

    Google Scholar 

  • Lakey JR, Mirbolooki M, Shapiro AM (2006) Current status of clinical islet cell transplantation. Methods Mol Biol. 2006:47–104

    Google Scholar 

  • Lally FJ, Ratcliffe H, Bone AJ (2001) Apoptosis and disease progression in the spontaneously diabetic BB/S rat. Diabetologia 44:320–324

    Article  CAS  Google Scholar 

  • Lechner A et al. (2004) No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes 53:616–623

    Article  CAS  Google Scholar 

  • Lenzen S et al. (2001) The LEW.1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus. Diabetologia 44:1189–1196

    Article  CAS  Google Scholar 

  • Loweth AC, et al. (1998) Human islets of Langerhans express Fas-Ligand and undergo apoptosis in response to interleukin-1ß and Fas ligation. Diabetes 47:727–732

    Article  CAS  Google Scholar 

  • Loweth AC, et al. (2000) Dissociation between Fas expression and induction of apoptosis in human islets of Langerhans. Diabetes, Obesity and Metabol 2:57–60

    Article  CAS  Google Scholar 

  • Lumelsky N, et al. (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394

    Article  CAS  Google Scholar 

  • MacDonald PE, Joseph JW, Rorsman P (2005) Glucose-sensing mechanisms in pancreatic beta-cells. Philos Trans R Soc Lond B Biol Sci 360:2211–2225

    Article  CAS  Google Scholar 

  • Maedler K et al. (2001) Glucose induces ß-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes 50:1683–1690

    Article  CAS  Google Scholar 

  • Mathis D, Benoist C (2006) Beta cell death during progression to diabetes. Nature 414:792–798

    Article  Google Scholar 

  • Meier JJ, et al. (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228

    Article  CAS  Google Scholar 

  • Meier JJ, et al. (2006) Increased vulnerability of newly forming beta cells to cytokine-induced cell death. Diabetologia 49:83–89

    Article  CAS  Google Scholar 

  • Mest H, Mentlein R (2005) Dipeptidyl peptidase inhibitors as new drugs for the treatment of type 2 diabetes. Diabetologia 48:616–620

    Article  CAS  Google Scholar 

  • Moriwaki M, et al. (1999) Fas and Fas ligand expression in inflamed islets in pancreas sections of patients with recent-onset Type 1 diabetes mellitus. Diabetologia 42:1332–1340

    Article  CAS  Google Scholar 

  • Ogata T, et al. (2004) Reversal of streptozotocin-induced hyperglycemia by transplantation of pseudoislets consisting of beta cells derived from ductal cells. Endocr J. 51:381–386

    Article  Google Scholar 

  • Paraskevas S, et al. (2000) Cell loss in isolated human islets occurs by apoptosis. Pancreas 20:270–276

    Article  CAS  Google Scholar 

  • Paty BW, et al. (2006) Assessment of glycemic control after islet transplantation using the continuous glucose monitor in insulin-independent versus insulin-requiring type 1 diabetes subjects. Diabetes Technol Ther. 8:165–173

    Article  CAS  Google Scholar 

  • Perfetti R (2004) The role of GLP-1 in the regulation of islet cell mass. Medscape Diabetes & Endocrinology 6(2)

    Google Scholar 

  • Rao MS, et al. (1996) Expression of transcription factors and stem cell factor precedes hepatocyte differentiation in rat pancreas. Gene Expr 6:15–22

    CAS  Google Scholar 

  • Ratner RE (2005) Therapeutic role of incretin mimetics. Medscape Diabetes & Endocrinology 7(1)

    Google Scholar 

  • Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2003) Diabetes Care 26:S5–20S

    Google Scholar 

  • Ridgway WM (2003) The non obese diabetic (NOD) mouse: a unique model for understanding the interaction between genetics and T cell response. Rev Endocr Metab Disord 4:263–269

    Article  CAS  Google Scholar 

  • Rolletschek A, Kania G, Wobus AM (2006) Generation of pancreatic insulin-producing cells from embryonic stem cells – 'Proof of principle', but questions still unanswered. Diabetologia 49:2541–2545

    Article  CAS  Google Scholar 

  • Rooman I, et al. (2000) Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1 in vitro. Diabetologia 43:907–914

    Article  CAS  Google Scholar 

  • Scharfmann R (2000) Control of early development of the pancreas in rodents and humans: implications of signals from the mesenchyme. Diabetologia 43:1083–1092

    Article  CAS  Google Scholar 

  • Servitja JM, Ferrer J (2004) Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia 47:597–613

    Article  CAS  Google Scholar 

  • Shapiro AM, et al. (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    Article  CAS  Google Scholar 

  • Shen CN et al. (2003) Transdifferentiation of pancreas to liver. Mech Dev 120:107–116

    Article  CAS  Google Scholar 

  • Stassi G et al. (1997) Nitric oxide primes pancreatic -cells for Fas-mediated destruction in insulin-dependent diabetes mellitus. J Exp Med 186:1193–1200

    Article  CAS  Google Scholar 

  • Stojkovic M et al. (2004a) Derivation of human embryonic stem cells from day-8 blastocysts recovered after three-step in vitro culture. Stem Cells 22:790–797

    Google Scholar 

  • Stojkovic M et al. (2004b) Derivation, growth and applications of human embryonic stem cells Reproduction 128:259–267

    Google Scholar 

  • Suarez-Pinzon W et al. (1999) ß-cell destruction in NOD mice correlates with Fas (CD95) expression on ß-cells and proinflammatory cytokine expression in islets. Diabetes 48:21–28

    Article  CAS  Google Scholar 

  • Sun J et al. (2006) Expression of Pdx-1 in bone marrow mesenchymal stem cells promotes differentiation of islet-like cells in vitro. Sci China C Life Sci 49:480–489

    Article  CAS  Google Scholar 

  • Tayaramma T et al. (2006) Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells. Stem Cells 24:2858–2867

    Article  Google Scholar 

  • Tisch R, McDevitt H (1996) Insulin-dependent diabetes mellitus. Cell 85:291–297

    Article  CAS  Google Scholar 

  • Tuch BE (2006) Stem cells--a clinical update. Aust Fam Physician 35:719–721

    Google Scholar 

  • Uwaifo GI, Ratner RE (2005) Novel pharmacologic agents for type 2 diabetes. Endocrinol Metab Clin North Am. 34:155–197

    Article  CAS  Google Scholar 

  • Wolf HK et al. (1990) Exocrine pancreatic tissue in human liver: a metaplastic process? Am J Surg Pathol 14:590–595

    Article  CAS  Google Scholar 

  • Yoon JW, Jun H-S, Santamaria P (1998) Cellular and molecular mechanisms for the initiation and progression of -cell dstruction resulting from the collaboration between macrophages and T cells. Autoimmunity 27:109–122

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy M. MacFarlane .

Editor information

Editors and Affiliations

Additional information

Questions/Exercises

  1. 1.

    Describe the cell mechanisms leading to T1D.

  2. 2.

    Highlight the molecular mechanisms underpinning T2D and its possible links with T1D.

  3. 3.

    Describe the main histological features of the pancreas and their pathological alteration following T1D insurgence.

  4. 4.

    Highlight the main biochemical and cellular prerequisites in pancreas tissue engineering.

  5. 5.

    Present the main clinical procedure for pancreatic islet transplantation and alternative suggested protocols; a critical discussion of their advantages and disadvantages.

  6. 6.

    List the factors leading to β cell apoptosis following pancreatic islet transplantation and explore the main strategies adopted to prevent it.

  7. 7.

    Speculate on the physico-chemical and biocompatibility properties of an ideal biomaterial scaffold for pancreas tissue engineering.

  8. 8.

    Analyze the molecular and cell biology links between diabetes and other pathologies such as cardiovascular diseases.

  9. 9.

    Discuss in a critical manner the main protocols used for in vitro pancreatic islet regeneration.

  10. 10.

    Analyze the current limitations in using embryonic stem cells for pancreatic islet regeneration and indicate the future perspectives.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

MacFarlane, W.M., Bone, A.J., Harrison, M. (2009). Pancreas Biology, Pathology, and Tissue Engineering. In: Santin, M. (eds) Strategies in Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74660-9_8

Download citation

Publish with us

Policies and ethics