Skip to main content

Fatigue and Creep

  • Chapter
  • First Online:
Composite Materials

Abstract

In Chap. 12 we described the monotonic behavior of a composite under ambient temperature conditions of loading. There are many applications of composites where cyclic fatigue and high-temperature, i.e., creep conditions prevail. Accordingly, in this chapter we go further in complexity and describe the fatigue and creep behavior of composites. Fatigue is the phenomenon of mechanical property degradation leading to failure of a material or a component under cyclic loading. The operative word in this definition is cyclic. This definition thus excludes the so-called phenomenon of static fatigue, which is sometimes used to describe stress corrosion cracking in glasses and ceramics in the presence of moisture. Creep refers to time-dependent deformation in a material, which becomes important at relatively high temperatures (T > 0.4T m, where T m is the melting point in kelvin). We first describe fatigue and then creep of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison JE, Jones JW (1993) In: Suresh S, Mortensen A, Needleman A (eds) Fundamentals of metal matrix composites. Butterworth-Heinemann, Boston, MA, p 269

    Chapter  Google Scholar 

  • Artz E, Wilkinson DS (1986) Acta Metall 34:1893

    Article  Google Scholar 

  • Beaumont PWR (1989) In: Phillips LN (ed) Design with advanced composite materials. Springer, Berlin, p 303

    Google Scholar 

  • Bender BA, Wallace JS, Schrodt DJ (1991) J Mater Sci 12:970

    Article  Google Scholar 

  • Boccaccini AR, Pearce DH, Janczak J, Beier W, Ponton CB (1997) Mater Sci Technol 13:852

    Article  Google Scholar 

  • Boccaccini AR, Ponton CB, Chawla KK (1998) Mater Sci Eng A241:142

    Google Scholar 

  • Bonnen JJ, You CP, Allison JE, Jones JW (1990) Proc Int Conf Fatigue. Pergamon, New York, p 887

    Google Scholar 

  • Champion AR, Krueger WH, Hartman HS, Dhingra AK (1978) Proc:1978 Intl Conf Compos Mater (ICCM/2). TMS-AIME, New York, p 883

    Google Scholar 

  • Chawla KK (1973a) Metallography 6:155

    Article  Google Scholar 

  • Chawla KK (1973b) Philos Mag 28:401

    Article  Google Scholar 

  • Chawla KK (1975a) Fibre Sci Technol 8:49

    Article  Google Scholar 

  • Chawla KK (1975b) In: Grain boundaries in eng. materials, Proc. 4th Bolton landing conf. Claitor’s Pub. Div., Baton Rouge, LA, p 435

    Google Scholar 

  • Chawla KK, Liaw PK (1979) J Mater Sci 14:2143

    Article  Google Scholar 

  • Chawla KK, Schneider H, Xu ZR, Schmücker M (1996) In: High temperature materials: design & processing considerations, Engineering foundation conference, Davos, Switzerland, TMS, Warrendale, PA, 19–24 May. p 235

    Google Scholar 

  • Chawla N (1997) Met Mater Trans 28A:2423

    Article  Google Scholar 

  • Chawla N, Holmes JW, Lowden RA (1996b) Scripta Mater 35:1411

    Article  Google Scholar 

  • Chawla N, Andres C, Jones JW, Allison JE (1998a) Metall Mater Trans 29:2843

    Article  Google Scholar 

  • Chawla N, Tur YK, Holmes JW, Barber JR, Szweda A (1998b) J Am Ceram Soc 81:1221

    Article  Google Scholar 

  • Chawla N, Kerr M, Chawla KK (2005) J Am Ceram Soc 88:101

    Article  Google Scholar 

  • Chawla N, Ganesh VV (2010) Int J Fatigue 32:856

    Article  Google Scholar 

  • Christman T, Suresh S (1988a) Acta Metall 36:1691

    Article  Google Scholar 

  • Christman T, Suresh S (1988b) Mater Sci Eng 102A:211

    Article  Google Scholar 

  • Crowe CR, Hasson DF (1982) In: Proc. 6th Int Conf. on the strength of metals and alloys. Pergamon, Oxford, p 859

    Google Scholar 

  • Davidson DL (1989) Eng Fract Mech 33:965

    Article  Google Scholar 

  • Davies PW, Nelmes G, Williams KR, Wilshire B (1973) Metal Sci J 7:87

    Article  Google Scholar 

  • Dlouhy A, Merk N, Eggeler G (1993) Acta Metall Mater 41:3245

    Article  Google Scholar 

  • Dragone TL, Nix WD (1992) Acta Metall Mater 40:2781

    Article  Google Scholar 

  • Dragone TL, Schlautmann JJ, Nix WD (1991) Metall Trans 22A:1029

    Article  Google Scholar 

  • Dunand DC, Derby B (1993) In: Suresh S, Mortensen A, Needleman A (eds) Fundamentals of metal matrix composites. Butterworth-Heinemann, Boston, MA, p 191

    Chapter  Google Scholar 

  • Dvorak GJ, Johnson WS (1980) Int J Fracture 16:585

    Article  Google Scholar 

  • Eggeler G, Dlouhy A (1994) In: Chawla KK, Liaw PK, Fishman SG (eds) High performance composites: commonalty of phenomena. TMS, Warrendale, PA, p 477

    Google Scholar 

  • Eriksen RH (1976) Composites 7:189

    Article  Google Scholar 

  • Godefroid LB, Chawla KK (1988) In: 3rd Latin American colloquium on fatigue and fracture of materials, Rio de Janeiro, Brazil

    Google Scholar 

  • Goel A, Chawla KK, Vaidya UK, Chawla N, Koopman M (2009) Mater Charact 60:537

    Article  Google Scholar 

  • Gomez JP, Wawner FW (1988) Personal communication

    Google Scholar 

  • Gouda M, Prewo KM, McEvily AJ (1981) In: Fatigue of fibrous composite materials, ASTM STP 723. American Society of Testing and Materials, Philadelphia, PA, p 101

    Book  Google Scholar 

  • Hack JE, Page RA, Leverant GR (1987) Met Trans A 15A:1389

    Google Scholar 

  • Hahn HT, Kim RY (1976) J Compos Mater 10:156

    Article  Google Scholar 

  • Hahn HT, Lorenzo L (1984) In: Advances in fracture research, ICF6, Vol. 1. Pergamon, Oxford, p 549

    Google Scholar 

  • Han LX, Suresh S (1989) J Am Ceram Soc 72:1233

    Article  Google Scholar 

  • Helms HE, Haley PJ (1989) In: Tennery VJ (ed) Ceramic materials and components for engines. Amer. Ceram. Soc, Westerville, OH, p 1347

    Google Scholar 

  • Highsmith AL, Reifsnider KL (1982) In: Damage in composite materials, ASTM STP 775. Amer. Soc. of Testing and Mater, Philadelphia, PA, p 103

    Google Scholar 

  • Holmes JW (1991) J Mater Sci 26:1808

    Article  Google Scholar 

  • Izuka Y, Norita T, Nishimura T, Fujisawa K (1986) In: Carbon fibers. Noyes Pub, Park Ridge, NJ, p 14

    Google Scholar 

  • Johnson WS (1988) In: Mechanical and Physical Behavior of Metallic and Ceramic Composites, 9th Risø Intl. Symp. on Metallurgy and Materials Science, Riso Nat. Lab., Roskilde, Denmark, p 403

    Google Scholar 

  • Johnson WS, Wallis RR (1986) Composite materials: fatigue and fracture, ASTM STP 907. ASTM, Philadelphia, PA, p 161

    Book  Google Scholar 

  • Karandikar PG, Chou T-W (1992) Ceram Eng Sci Proc 13:882

    Google Scholar 

  • Kelly A, Street KN (1972a) Proc R Soc Lond A 328:267

    Article  Google Scholar 

  • Kelly A, Street KN (1972b) Proc R Soc Lond A 328:283

    Article  Google Scholar 

  • Kelly A, Tyson WR (1966) J Mech Phys Solids 14:177

    Article  Google Scholar 

  • Kerr M, Chawla N (2004) Acta Mater 52:4527

    Article  Google Scholar 

  • Kumai S, Knott JF (1991) Mater Sci Eng A146:317

    Article  Google Scholar 

  • Kumai S, King JE, Knott JF (1990) Fatigue Fract Eng Mater Struct 13:511

    Article  Google Scholar 

  • Kwei LK, Chawla KK (1992) J Mater Sci 27:1101

    Article  Google Scholar 

  • Lavengood RE, Gulbransen LE (1969) Polym Eng Sci 9:365

    Article  Google Scholar 

  • Lee CS, Chawla KK (1987) In: Proc.: Industry-University Adv. Mater. Conf. TMS-AIME, Warrendale, PA, p 289

    Google Scholar 

  • Lee CS, Chawla KK, Rigsbee JM, Pfeifer M (1988) In: Cast reinforced metal composites. ASM Int, Metals Park, OH, p 301

    Google Scholar 

  • Levin M, Karlsson B, Wasén J (1989) In: Fundamental relationships between microstructures and mechanical properties of metal matrix composites. TMS, Warrendale, PA, p 421

    Google Scholar 

  • Lilholt H, Taya M (1987) Proc: ICCM/6. Elsevier, Barking, pp 2.234–2.244

    Google Scholar 

  • Lin H-T, Becher PF (1990) J Am Ceram Soc 73:1378

    Article  Google Scholar 

  • Logsdon WA, Liaw PK (1986) Eng Fract Mech 24:737

    Article  Google Scholar 

  • Mah T, Hecht NL, McCullum DE, Hoenigman JR, Kim HM, Katz AP, Lipsitt HA (1984) J Mater Sci 19:1191

    Article  Google Scholar 

  • Mandell JF, Mcgarry FJ, Huang DD, Li CG (1983) Polym Compos 4:32

    Article  Google Scholar 

  • McCartney RF, Richard RC, Trozzo PS (1967) Trans ASM 60:384

    Google Scholar 

  • McGuire MA, Harris B (1974) J Phys D Appl Phys 7:1788

    Article  Google Scholar 

  • McLean M (1983) Directionally solidified materials for high temperature service. The Metals Soc, London

    Google Scholar 

  • McLean M (1985) Proc.: 5th Intl. Conf. on Composite Materials (ICCM/V). TMS-AIME, Warrendale, PA, p 639

    Google Scholar 

  • Morimoto T, Yamaoka T, Lilholt H, Taya M (1988) J Eng Mater Tech Trans ASME 110:70

    Article  Google Scholar 

  • Nardone VC, Strife JR (1987) Metall Trans 18A:109

    Article  Google Scholar 

  • Nardone VC, Tien JK (1986) Scripta Mater 20:797

    Article  Google Scholar 

  • Nieh TG (1984) Metall Trans 15A:139

    Article  Google Scholar 

  • O’Brien TK (1984) Interlaminar fracture of composites. NASA TM 85768

    Google Scholar 

  • O’Brien TK, Reifsnider KL (1981) J Compos Mater 15:55

    Article  Google Scholar 

  • Ogin SL, Smith PA, Beaumont PWR (1985) Compos Sci Technol 22:23

    Article  Google Scholar 

  • Owens MJ, Dukes R (1967) J Strain Anal 2:272

    Article  Google Scholar 

  • Owens MJ, Smith TR, Dukes R (1969) Plast Polymers 37:227

    Google Scholar 

  • Page RA, Hack JE, Sherman R, Leverant GR (1987) Met Trans A 15A:1397

    Google Scholar 

  • Pandey AB, Mishra RS, Mahajan YR (1992) Acta Metall Mater 40:2045

    Article  Google Scholar 

  • Paris PC, Erdogan F (1963) J Basic Eng Trans ASME 85:528

    Article  Google Scholar 

  • Parker JD, Wilshire B (1975) Metal Sci J 9:248

    Article  Google Scholar 

  • Pfeiffer NJ, Alic JA (1978) J Eng Mater Technol 100:32

    Article  Google Scholar 

  • Phillips DC (1983) In: Handbook of composites, vol 4. North-Holland, Amsterdam, p 472

    Google Scholar 

  • Prewo KM, Brennan JJ, Layden GK (1986) Am Ceram Soc Bull 65:305

    Google Scholar 

  • Pruitt L, Suresh S (1992) J Mater Sci Lett 11:1356

    Article  Google Scholar 

  • Pysher DJ, Goretta KC, Hodder RS Jr, Tressler RE (1989) J Am Ceram Soc 72:284

    Article  Google Scholar 

  • Ramakrishnan V, Jayaraman N (1993) J Mater Sci 28:5580

    Google Scholar 

  • Reifsnider KL, Henneke EG, Stinchcomb WW, Duke JC (1981) In: Mechanics of Composite materials. Pergamon, New York, p 399

    Google Scholar 

  • Rohatgi PK, Asthana R, Tewari SN, Narendranath CS (1994) In: Chawla KK, Liaw PK, Fishman SG (eds) High performance composites: commonalty of phenomena. TMS, Warrendale, PA, p 93

    Google Scholar 

  • Routbort JL, Goretta KC, Dominguez-Rodriguez A, de Arrellano-Lopez AR (1990) J Hard Mater 1:221

    Google Scholar 

  • Saff CR, Harmon DM, Johnson WS (1988) J Met 40:58

    Google Scholar 

  • Shang JK, Yu W, Ritchie RO (1988) Mater Sci Eng A102:181

    Article  Google Scholar 

  • Sørensen BF, Holmes JW (1995) Scripta Met Mater 32:1393

    Article  Google Scholar 

  • Stoloff NS (1987) Advances in composite materials. Applied Sci. Pub, London, p 247

    Google Scholar 

  • Suresh S (1991) J Hard Mater 2:29

    Google Scholar 

  • Suresh S, Han LX, Petrovic JJ (1988) J Am Ceram Soc 71:l58–161

    Article  Google Scholar 

  • Talreja R (1985a) Fatigue of composite materials. Technical University of Denmark, Lyngby

    Google Scholar 

  • Taylor LG, Ryder DA (1976) Composites 1:27

    Article  Google Scholar 

  • Wang Z, Laird C, Hashin Z, Rosen BW, Yen CF (1991) J Mater Sci 26:5335

    Article  Google Scholar 

  • Webster D (1982) Metall Mater Trans 13A:1511

    Article  Google Scholar 

  • Wetherhold RC, Zawada LP (1991) In: Fractography of glasses and ceramics. In: Frechete VD, Varner JR (eds) Ceramic transactions, vol 17. Amer. Ceram. Soc, Westerville, OH, p 391

    Google Scholar 

  • Wiederhorn SM, Hockey BJ (1991) Ceram Int 17:243

    Article  Google Scholar 

  • Wiederhorn SM, Liu W, Carroll DF, Chuang T-J (1988) J Am Ceram Soc 12:602

    Article  Google Scholar 

  • Williams DR, Fine ME (1985) In: Proc.: Fifth Intl Conf. Composite Materials (ICCM/V). TMS-AIME, Warrendale, PA, p 639

    Google Scholar 

  • Williams DR, Fine ME (1987) In: Proc.: 6th Intl. Conf. on Composite Materials (ICCM/VI), vol 2. Elsevier Applied Science, London, p 113

    Google Scholar 

  • Xu ZR, Chawla KK, Wolfenden A, Neuman A, Liggett GM, Chawla N (1995) Mater Sci Eng A A203:75

    Article  Google Scholar 

  • Yang J-M, Chen ST (1992) Adv Compos Lett 1:27

    Google Scholar 

Further Reading

  • Hertzberg RW, Manson JA (1980) Fatigue of engineering plastics. Academic, New York

    Google Scholar 

  • Talreja R (1985b) Fatigue of composite materials. Technical University of Denmark, Lyngby

    Google Scholar 

  • Talreja R (ed) (1994) Damage mechanics of composite materials. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishan K. Chawla .

Problems

Problems

  1. 13.1.

    List some of the possible fatigue crack initiating sites in particle, short fiber, and continuous fiber reinforced composites.

  2. 13.2.

    What factors do you think will be important in the environmental effects on the fatigue behavior of fiber reinforced composites?

  3. 13.3.

    Acoustic emission can be used to monitor damage in carbon fiber/epoxy during fatigue. Under steady loading conditions the damage is controlled by fiber failure and one can describe the acoustic emission by

    $$ \frac{{{\text{d}}N}}{{{\hbox{d}}t}} = \frac{A}{{{{\left( {t + T} \right)}^n}}} $$

    where N is the total number of emissions, t is the time, T is a time constant, and A is constant under steady loading conditions. Taking n = 1, show that log t is a linear function of the accumulated counts (Hint: see Fuwa M, Harris B, Bunsell AR (1975) J Appl Phys 8: 1460).

  4. 13.4.

    Discuss the effects of frequency of cycling in regard to hysteretic heating in PMCs and CMCs.

  5. 13.5.

    Discuss the fatigue behavior an aramid fiber reinforced PMC is subjected to fatigue at negative and positive stress ratio (R).

  6. 13.6.

    Which one will have a better creep resistance in air: an oxide/oxide composite or a nonoxide/nonoxide system? Explain your answer.

  7. 13.7.

    Diffusional creep involving mass transport becomes important at low stresses and high temperatures. Discuss the importance of reinforcement/matrix interface in creep of a composite under these conditions.

  8. 13.8.

    Assume that the creep of fiber and matrix can be described by a power-law and that a well bonded interface exists. Assume also that the strain rate of the composite is given be the volume weighted average of the strain rates of the fiber and matrix. Derive an expression for the strength of such a composite.

  9. 13.9.

    In some composites, residual thermal stress distribution obtained at room temperature on cooling from the high processing temperature results in compressive radial gripping at the interface. Discuss the effect of high temperatures or creep in such a composite.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, K.K. (2012). Fatigue and Creep. In: Composite Materials. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74365-3_13

Download citation

Publish with us

Policies and ethics