Skip to main content

CB2 Cannabinoid Receptors: Molecular, Signaling, and Trafficking Properties

  • Chapter
Cannabinoids and the Brain

Two G protein-coupled receptors, CB1 and CB2, have thus far been identified and are responsible for most of the effects produced by cannabinoids. Cannabinoids, such as Δ9-THC, produce psychoactive effects through activation of neuronal CB1 receptors, while CB2 receptors mediate the immune properties of this class of drugs. The molecular, signaling, and trafficking properties of CB2 receptors will be the focus of this review. The cloning of CB2 receptors will be described, along with evidence that individual cannabinoid ligands, differing subtly in structure, might bind to CB2 receptors in distinct fashions. In addition, potential mechanisms underlying the dramatic upregulation of CB2 receptors in response to inflammatory stimuli will be discussed. Next, the currently known signal transduction pathways associated with CB2 receptor activation will be detailed, from G protein coupling to regulation of intracellular effectors. Evidence for the ability of different CB2 receptor agonists to distinctly regulate multiple effectors, known as agonist-directed trafficking of response (ADTR), will also be presented. Furthermore, a potential relationship between CB2 receptor ADTR and immune cell function will be discussed. Lastly, two distinct aspects of CB2 receptor signaling will be described that may help to explain the well-documented interactions of cannabinoids with other receptor systems. It is hoped that this brief review will provide a basic understanding of CB2 receptor signaling necessary to appreciate the exciting future approaching for the development of potentially therapeutic selective CB2 receptor ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alves ID, Salamon Z, Varga E, Yamamura HI, Tollin G, Hruby VJ (2003) Direct observation of G protein binding to the human delta-opioid receptor using plasmon-waveguide resonance spectroscopy. J Biol Chem 278:48890–48897.

    Article  PubMed  CAS  Google Scholar 

  • Bayewitch M, Avidor-Reiss T, Levy R, Barg J, Mechoulam R, Vogel Z (1995) The peripheral cannabinoid receptor: adenylate cyclase inhibition and G protein coupling. FEBS Lett 375:143–147.

    Article  PubMed  CAS  Google Scholar 

  • Becher B, Antel JP (1996) Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia 18:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23:11136–11141.

    PubMed  CAS  Google Scholar 

  • Berg KA, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke WP (1998) Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharm 54:94–104.

    CAS  Google Scholar 

  • Bonhaus DW, Chang LK, Kwan J, Martin GR (1998) Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: evidence for agonist-specific trafficking of intracellular responses. J Pharmacol Exp Ther 287:884–888.

    PubMed  CAS  Google Scholar 

  • Borner C, Hollt V, Kraus J (2006) Cannabinoid receptor type 2 agonists induce transcription of the mu-opioid receptor gene in Jurkat T cells. Mol Pharm 69:1486–1491.

    Article  CAS  Google Scholar 

  • Borner C, Hollt V, Sebald W, Kraus J (2007) Transcriptional regulation of the cannabinoid receptor type 1 gene in T cells by cannabinoids. J Leukoc Biol 81:336–343.

    Article  PubMed  CAS  Google Scholar 

  • Bouaboula M, Poinot-Chazel C, Bourrie B, Canat X, Calandra B, Rinaldi-Carmona M, Le Fur G, Casellas P (1995) Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem J 312:637–641.

    PubMed  CAS  Google Scholar 

  • Bouaboula M, Poinot-Chazel C, Marchand J, Canat X, Bourrie B, Rinaldi-Carmona M, Calandra B, Le Fur G, Casellas P (1996) Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression. Eur J Biochem 237:704–711.

    Article  PubMed  CAS  Google Scholar 

  • Bouaboula M, Desnoyer N, Carayon P, Combes T, Casellas P (1999a) G protein modulation induced by a selective inverse agonist for the peripheral cannabinoid receptor CB2: implication for intracellular signalization cross-regulation. Mol Pharm 55:473–480.

    CAS  Google Scholar 

  • Bouaboula M, Dussossoy D, Casellas P (1999b) Regulation of peripheral cannabinoid receptor CB2 phosphorylation by the inverse agonist SR 144528. Implications for receptor biological responses. J Biol Chem 274:20397–20405.

    Article  PubMed  CAS  Google Scholar 

  • Brotchie JM (2003) CB1 cannabinoid receptor signalling in Parkinson’s disease. Curr Opin Pharmacol 3:54–61.

    Article  PubMed  CAS  Google Scholar 

  • Brown SM, Wager-Miller J, Mackie K (2002) Cloning and molecular characterization of the rat CB2 cannabinoid receptor. Biochim Biophys Acta 1576:255–264.

    PubMed  CAS  Google Scholar 

  • Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11:297–305.

    Article  PubMed  CAS  Google Scholar 

  • Carrier EJ, Kearn CS, Barkmeier AJ, Breese NM, Yang W, Nithipatikom K, Pfister SL, Campbell WB, Hillard CJ (2004) Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol Pharm 65:999–1007.

    Article  CAS  Google Scholar 

  • Cichewicz DL (2004) Synergistic interactions between cannabinoid and opioid analgesics. Life Sci 74:1317–1324.

    Article  PubMed  CAS  Google Scholar 

  • Conti S, Costa B, Colleoni M, Parolaro D, Giagnoni G (2002) Antiinflammatory action of endocannabinoid palmitoylethanolamide and the synthetic cannabinoid nabilone in a model of acute inflammation in the rat. Br J Pharmacol 135:181–187.

    Article  PubMed  CAS  Google Scholar 

  • Cravatt B, Lichtman A (2004) The endogenous cannabinoid system and its role in nociceptive behavior. J Neurobiol 61:149–160.

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Joyce KE, Briley EM, Mansouri J, Mackie K, Blond O, Lai Y, Ma AL, Mitchell RL (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharm 48:443–450.

    CAS  Google Scholar 

  • Felder CC, Joyce KE, Briley EM, Glass M, Mackie KP, Fahey KJ, Cullinan GJ, Hunden DC, Johnson DW, Chaney MO, Koppel GA, Brownstein M (1998) LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J Pharmacol Exp Ther 284:291–297.

    PubMed  CAS  Google Scholar 

  • Figini M, Emanueli C, Bertrand C, Sicuteri R, Regoli D, Geppetti P (1997) Differential activation of the epithelial and smooth muscle NK1 receptors by synthetic tachykinin agonists in guinea-pig trachea. Br J Pharmacol 121:773–781.

    Article  PubMed  CAS  Google Scholar 

  • Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61.

    Article  PubMed  CAS  Google Scholar 

  • Galve-Roperh I, Sanchez C, Cortes ML, del Pulgar TG, Izquierdo M, Guzman M (2000) Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med 6:313–319.

    Article  PubMed  CAS  Google Scholar 

  • Gerard CM, Mollereau C, Vassart G, Parmentier M (1991) Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J 279:129–134.

    PubMed  CAS  Google Scholar 

  • Glass M, Felder CC (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci 17:5327–5333.

    PubMed  CAS  Google Scholar 

  • Gomez del Pulgar T, Velasco G, Sanchez C, Haro A, Guzman M (2002) De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis. Biochem J 363:183–188.

    Article  PubMed  CAS  Google Scholar 

  • Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, Uhl GR (2006) Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 1071:10–23.

    Article  PubMed  CAS  Google Scholar 

  • Gouldson P, Calandra B, Legoux P, Kerneis A, Rinaldi-Carmona M, Barth F, Le Fur G, Ferrara P, Shire D (2000) Mutational analysis and molecular modelling of the antagonist SR 144528 binding site on the human cannabinoid CB2 receptor. Eur J Pharmacol 401:17–25.

    Article  PubMed  CAS  Google Scholar 

  • Gudermann T, Schoneberg T, Schultz G (1997) Functional and structural complexity of signal transduction via G protein-coupled receptors. Annu Rev Neurosci 20:399–427.

    Article  PubMed  CAS  Google Scholar 

  • Guzman M, Galve-Roperh I, Sanchez C (2001) Ceramide: a new second messenger of cannabinoid action. Trends Pharmacol Sci 22:19–22.

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 87:1932–1936.

    Article  PubMed  CAS  Google Scholar 

  • Herrera B, Carracedo A, Diez-Zaera M, Gomez del Pulgar T, Guzman M, Velasco G (2006) The CB2 cannabinoid receptor signals apoptosis via ceramide-dependent activation of the mitochondrial intrinsic pathway. Exp Cell Res 312:2121–2131.

    Article  PubMed  CAS  Google Scholar 

  • Howlett AC (1985) Cannabinoid inhibition of adenylate cyclase. Biochemistry of the response in neuroblastoma cell membranes. Mol Pharm 27:429–436.

    CAS  Google Scholar 

  • Howlett AC (1995) Pharmacology of cannabinoid receptors. Annu Rev Pharmacol Toxicol 35:607–634.

    Article  PubMed  CAS  Google Scholar 

  • Howlett AC, Mukhopadhyay S (2000) Cellular signal transduction by anandamide and 2-arachidonoylglycerol. Chem Phys Lipids 108:53–70.

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim MM, Deng H, Zvonok A, Cockayne DA, Kwan J, Mata HP, Vanderah TW, Lai J, Porreca F, Makriyannis A, Malan Jr TP (2003) Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci USA 100:10529–10533.

    Article  PubMed  CAS  Google Scholar 

  • Ishac E, Jiang L, Lake K, Varga K, Abood M, Kunos G (1996) Inhibition of exocytotic noradrenaline release by presynaptic CB1 receptors on peripheral sympathetic nerves. Br J Pharmacol 118:2023–2028.

    PubMed  CAS  Google Scholar 

  • Iversen L, Chapman V (2002) Cannabinoids: a real prospect for pain relief. Curr Opin Pharmacol 2:50–55.

    Article  PubMed  CAS  Google Scholar 

  • Jorda MA, Verbakel SE, Valk PJ, Vankan-Berkhoudt YV, Maccarrone M, Finazzi-Agro A, Lowenberg B, Delwel R (2002) Hematopoietic cells expressing the peripheral cannabinoid receptor migrate in response to the endocannabinoid 2-arachidonoylglycerol. Blood 99:2786–2793.

    Article  PubMed  CAS  Google Scholar 

  • Kaminski NE, Koh WS, Yang KH, Lee M, Kessler FK (1994) Suppression of the humoral immune response by cannabinoids is partially mediated through inhibition of adenylate cyclase by a pertussis toxin-sensitive G protein-coupled mechanism. Biochem Pharmacol 48:1899–1908.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan BL, Rockwell CE, Kaminski NE (2003) Evidence for cannabinoid receptor-dependent and -independent mechanisms of action in leukocytes. J Pharmacol Exp Ther 306:1077–1085.

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (2001) Inverse, protean, and ligand-selective agonism: matters of receptor conformation. FASEB J 15:598–611.

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (2002) Drug efficacy at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 42:349–379.

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto S, Gokoh M, Oka S, Muramatsu M, Kajiwara T, Waku K, Sugiura T (2003) 2-arachidonoylglycerol induces the migration of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes through the cannabinoid CB2 receptor-dependent mechanism. J Biol Chem 278:24469–24475.

    Article  PubMed  CAS  Google Scholar 

  • Klein T, Newton C, Larsen K, Lu L, Perkins I, Liang N, Friedman H (2003) The cannabinoid system and immune modulation. J Leukoc Biol 74:486–496.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Arai S, Waku K, Sugiura T (2001) Activation by 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, of p42/44 mitogen-activated protein kinase in HL-60 cells. J Biochem 129:665–669.

    PubMed  CAS  Google Scholar 

  • Lunn CA, Fine JS, Rojas-Triana A, Jackson JV, Fan X, Kung TT, Gonsiorek W, Schwarz MA, Lavey B, Kozlowski JA, Narula SK, Lundell DJ, Hipkin RW, Bober LA (2006) A novel cannabinoid peripheral cannabinoid receptor-selective inverse agonist blocks leukocyte recruitment in vivo. J Pharmacol Exp Ther 316:780–788.

    Google Scholar 

  • Mackie K, Hille B (1992) Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci USA 89:3825–3829.

    Article  PubMed  CAS  Google Scholar 

  • Mackie K, Lai Y, Westenbroek R, Mitchell R (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 15:6552–6561.

    PubMed  CAS  Google Scholar 

  • Maekawa T, Nojima H, Kuraishi Y, Aisaka K (2006) The cannabinoid CB2 receptor inverse agonist JTE-907 suppresses spontaneous itch-associated responses of NC mice, a model of atopic dermatitis. Eur J Pharmacol 542:179–183.

    Article  PubMed  CAS  Google Scholar 

  • Maneuf YP, Brotchie JM (1997) Paradoxical action of the cannabinoid WIN 55, 212–2 in stimulated and basal cyclic AMP accumulation in rat globus pallidus slices. Br J Pharmacol 120:1397–1398.

    Article  PubMed  CAS  Google Scholar 

  • Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN (2005) Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J Neurochem 95:437–445.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda L, Lolait S, Brownstein M, Young A, Bonner T (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564.

    Article  PubMed  CAS  Google Scholar 

  • McAllister SD, Griffin G, Satin LS, Abood ME (1999) Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system. J Pharmacol Exp Ther 291:618–626.

    PubMed  CAS  Google Scholar 

  • Molina-Holgado E, Vela JM, Arevalo-Martin A, Almazan G, Molina-Holgado F, Borrell J, Guaza C (2002) Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J Neurosci 22:9742–9753.

    PubMed  CAS  Google Scholar 

  • Molina-Holgado F, Pinteaux E, Heenan L, Moore JD, Rothwell NJ, Gibson RM (2005) Neuroprotective effects of the synthetic cannabinoid HU-210 in primary cortical neurons are mediated by phosphatidylinositol 3-kinase/Akt signaling. Mol Cell Neurosci 28:189–194.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Das S, Williams EA, Moore D, Jones JD, Zahm DS, Ndengele MM, Lechner AJ, Howlett AC (2006) Lipopolysaccharide and cyclic AMP regulation of CB2 cannabinoid receptor levels in rat brain and mouse RAW 264.7 macrophages. J Neuroimmunol 181:82–92.

    Article  PubMed  CAS  Google Scholar 

  • Munro S, Thomas K, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65.

    Article  PubMed  CAS  Google Scholar 

  • Oka S, Ikeda S, Kishimoto S, Gokoh M, Yanagimoto S, Waku K, Sugiura T (2004) 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces the migration of EoL-1 human eosinophilic leukemia cells and human peripheral blood eosinophils. J Leukoc Biol 76:1002–1009.

    Article  PubMed  CAS  Google Scholar 

  • Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z, Tagliaferro P, Gardner E, Brusco A, Akinshola BE, Liu QR, Hope B, Iwasaki S, Arinami T, Teasenfitz L, Uhl GR (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536.

    Article  PubMed  CAS  Google Scholar 

  • Prather PL (2004) Inverse agonists: tools to reveal ligand-specific conformations of G protein-coupled receptors. Sci STKE 2004:1.

    Article  Google Scholar 

  • Racz I, Bilkei-Gorzo A, Toth Z, Michel K, Palkovits M, Zimmer A (2003) A critical role for the cannabinoid CB1 receptors in alcohol dependence and stress-stimulated ethanol drinking. J Neurosci 23:2453–2458.

    PubMed  CAS  Google Scholar 

  • Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25:1904–1913.

    Article  PubMed  CAS  Google Scholar 

  • Ravinet T, Arnone M, Delgorge C, Gonalons N, Keane P, Maffrand J, Soubrie P (2002) Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am J Physiol Regul Integr Comp Physiol 284:345–353.

    Google Scholar 

  • Rayman N, Lam KH, Laman JD, Simons PJ, Lowenberg B, Sonneveld P, Delwel R (2004) Distinct expression profiles of the peripheral cannabinoid receptor in lymphoid tissues depending on receptor activation status. J Immunol 172:2111–2117.

    PubMed  CAS  Google Scholar 

  • Sanchez C, de Ceballos ML, del Pulgar TG, Rueda D, Corbacho C, Velasco G, Galve-Roperh I, Huffman JW, Ramon y Cajal S, Guzman M (2001) Inhibition of glioma growth in vivo by selective activation of the CB2 cannabinoid receptor. Cancer Res 61:5784–5789.

    PubMed  CAS  Google Scholar 

  • Sanchez MG, Ruiz-Llorente L, Sanchez AM, Diaz-Laviada I (2003) Activation of phosphoinositide 3-kinase/PKB pathway by CB1 and CB2 cannabinoid receptors expressed in prostate PC-3 cells. Involvement in Raf-1 stimulation and NGF induction. Cell Signal 15:851–859.

    Article  PubMed  CAS  Google Scholar 

  • Scott D, Wright C, Angus J (2004) Evidence that CB1 and CB2 cannabinoid receptors mediate antinoception in neuropathic pain in the rat. Pain 109:124–131.

    Article  PubMed  CAS  Google Scholar 

  • Shire D, Calandra B, Rinaldi-Carmona M, Oustric D, Pessegue B, Bonnin-Cabanne O, Le Fur G, Caput D, Ferrara P (1996) Molecular cloning, expression and function of the murine CB2 peripheral cannabinoid receptor. Biochim Biophys Acta 1307:132–136.

    PubMed  Google Scholar 

  • Shoemaker JL, Joseph BK, Ruckle MB, Mayeux PR, Prather PL (2005a) The endocannabinoid noladin ether acts as a full agonist at human CB2 cannabinoid receptors. J Pharmacol Exp Ther 314:868–875.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker JL, Ruckle MB, Mayeux PR, Prather PL (2005b) Agonist-directed trafficking of response by endocannabinoids acting at CB2 receptors. J Pharmacol Exp Ther 315:828–838.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker JL, Seely KA, Reed RL, Crow JP, Prather PL (2007) The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset. J Neurochem 101:87–98.

    Article  PubMed  CAS  Google Scholar 

  • Sim-Selley LJ (2003) Regulation of cannabinoid CB1 receptors in the central nervous system by chronic cannabinoids. Crit Rev Neurobiol 15:91–119.

    Article  PubMed  CAS  Google Scholar 

  • Slipetz DM, O’Neill GP, Favreau L, Dufresne C, Gallant M, Gareau Y, Guay D, Labelle M, Metters KM (1995) Activation of the human peripheral cannabinoid receptor results in inhibition of adenylyl cyclase. Mol Pharm 48:352–361.

    CAS  Google Scholar 

  • Soderstrom K, Johnson F (2000) CB1 cannabinoid receptor expression in brain regions associated with zebra finch song control. Brain Res 857:151–157.

    Article  PubMed  CAS  Google Scholar 

  • Soderstrom K, Leid M, Moore FL, Murray TF (2000) Behavioral, pharmacological, and molecular characterization of an amphibian cannabinoid receptor. J Neurochem 75:413–423.

    Article  PubMed  CAS  Google Scholar 

  • Song ZH, Slowey CA, Hurst DP, Reggio PH (1999) The difference between the CB1 and CB2 cannabinoid receptors at position 5.46 is crucial for the selectivity of WIN55212–2 for CB2. Mol Pharm 56:834–840.

    CAS  Google Scholar 

  • Strange PG (2002) Mechanisms of inverse agonism at G protein-coupled receptors. Trends Pharmacol Sci 23:89–95.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T, Kodaka T, Kondo S, Nakane S, Kondo H, Waku K, Ishima Y, Watanabe K, Yamamoto I (1997) Is the cannabinoid CB1 receptor a 2-arachidonoylglycerol receptor? Structural requirements for triggering a Ca2+ transient in NG108–15 cells. J Biochem 122:890–895.

    PubMed  CAS  Google Scholar 

  • Sugiura T, Kondo S, Kishimoto S, Miyashita T, Nakane S, Kodaka T, Suhara Y, Takayama H, Waku K (2000) Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. J Biol Chem 275:605–612.

    Article  PubMed  CAS  Google Scholar 

  • Tao Q, McAllister SD, Andreassi J, Nowell KW, Cabral GA, Hurst DP, Bachtel K, Ekman MC, Reggio PH, Abood ME (1999) Role of a conserved lysine residue in the peripheral cannabinoid receptor (CB2): evidence for subtype specificity. Mol Pharm 55:605–613.

    CAS  Google Scholar 

  • Tuccinardi T, Ferrarini PL, Manera C, Ortore G, Saccomanni G, Martinelli A (2006) Cannabinoid CB2 /CB1 selectivity. Receptor modeling and automated docking analysis. J Med Chem 49:984–994.

    Article  PubMed  CAS  Google Scholar 

  • Ueda Y, Miyagawa N, Wakitani K (2007) Involvement of cannabinoid CB2 receptors in the IgE-mediated triphasic cutaneous reaction in mice. Life Sci 80:414–419.

    Article  PubMed  CAS  Google Scholar 

  • Valk PJ, Hol S, Vankan Y, Ihle JN, Askew D, Jenkins NA, Gilbert DJ, Copeland NG, de Both NJ, Lowenberg B, Delwel R (1997) The genes encoding the peripheral cannabinoid receptor and alpha-L-fucosidase are located near a newly identified common virus integration site, Evi11. J Virol 71:6796–6804.

    PubMed  CAS  Google Scholar 

  • Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison JS, Marnett LJ, Di Marzo V, Pittman QJ, Patel KD, Sharkey KA (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310:329–332.

    Article  PubMed  CAS  Google Scholar 

  • Vasquez C, Lewis DL (1999) The CB1 cannabinoid receptor can sequester G proteins, making them unavailable to couple to other receptors. J Neurosci 19:9271–9280.

    PubMed  CAS  Google Scholar 

  • Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 23:1398–1405.

    PubMed  CAS  Google Scholar 

  • Wiens BL, Nelson CS, Neve KA (1998) Contribution of serine residues to constitutive and agonist-induced signaling via the D2S dopamine receptor: evidence for multiple, agonist-specific active conformations. Mol Pharm 54:435–444.

    CAS  Google Scholar 

  • Yamaguchi F, Macrae AD, Brenner S (1996) Molecular cloning of two cannabinoid type 1-like receptor genes from the puffer fish Fugu rubripes. Genomics 35:603–605.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Prather, P.L. (2008). CB2 Cannabinoid Receptors: Molecular, Signaling, and Trafficking Properties. In: Köfalvi, A. (eds) Cannabinoids and the Brain. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74349-3_6

Download citation

Publish with us

Policies and ethics