Skip to main content

Cannabinoids for the Control of multiple Sclerosis

  • Chapter
Cannabinoids and the Brain

In response to patient perceptions that cannabis can control some of the symptoms of multiple sclerosis (MS), scientific studies in experimental models and clinical trials in MS have been undertaken. These studies and recent understanding of the biology of the cannabinoid system and MS have provided a rationale and objective evidence to support these perceptions. Indeed, the first cannabis-based medicine for the treatment of signs has been recently licensed for use in MS. Although most clinical studies have focused on symptom control, experimental evidence also indicates a potential action for cannabinoids in the control of autoimmune and neurodegenerative processes. These drive the underlying disease pathology that cause the varied symptomatology, for which cannabis-based medicines may currently be used. In the future it may possible to harness the medical benefits that the cannabis system has to offer to control MS, whilst limiting the adverse effects, both physical and psycho-social, associated with smoking cannabis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alusi SH, Worthington J, Glickman S, Bain PG (2001) A study of tremor in multiple sclerosis. Brain 124:720–730.

    PubMed  CAS  Google Scholar 

  • Arevalo-Martin A, Vela JM, Molina-Holgado E, Borrell J, Guaza C (2003) Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J Neurosci 23:2511–2516.

    PubMed  CAS  Google Scholar 

  • Baker D, Jackson SJ (2007) Models of multiple sclerosis. Adv Clin Neurosci Rehab 6:10–12.

    Google Scholar 

  • Baker D, Pryce G (2004) The potential role of the endocannabinoid system in the control of multiple sclerosis. Curr Med Chem 4:195–202.

    CAS  Google Scholar 

  • Baker D, Pryce G, Croxford JL, Brown P, Huffman JW, Pertwee RG, Layward L (2000) Cannabinoids control spasticity and tremor in an animal model of multiple sclerosis. Nature 404:84–87.

    PubMed  CAS  Google Scholar 

  • Baker D, Pryce G, Croxford JL, Brown P, Makryiannis A, Pertwee R, Layward L, Di Marzo V (2001) Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J 15:300–302.

    PubMed  CAS  Google Scholar 

  • Benito C, Romero JP, Clemente D, Docagne F, Hillard C, Guaze C, Tolon RM, Romero J (2007) Cannabinoid CB1 and CB2 receptors and FAAH are specific markers of plaque cell subtypes in human multiple sclerosis. J Neurosci 27:2396–2402.

    PubMed  CAS  Google Scholar 

  • Bilsland LG, Dick JRT, Pryce G, Petrosino S, Di Marzo V, Baker D, Greensmith L (2006) Manipulation of the endocannabinoid system ameliorates disease symptoms in the SOD1G93A mouse model of ALS. FASEB J 20:1003–1005.

    PubMed  CAS  Google Scholar 

  • Bjartmar C, Trapp BD (2003) Axonal degeneration and progressive neurologic disability in multiple sclerosis. Neurotox Res 5:157–164.

    PubMed  Google Scholar 

  • Bolton C, Paul C (2006) Glutamate receptors in neuroinflammatory demyelinating disease. Mediators Inflamm 2006:1–12.

    Google Scholar 

  • Bolton C, O’Neill JK, Allen SJ, Baker D (1997) Regulation of chronic relapsing experimental allergic encephalomyelitis by endogenous and exogenous glucocorticoids. Int Arch Allergy Immunol 114:74–80.

    PubMed  CAS  Google Scholar 

  • Borner C, Hollt V, Sebald W, Kraus J (2007) Transcriptional regulation of the cannabinoid receptor type 1 gene in T cells by cannabinoids. J Leukoc Biol 81:336–343.

    PubMed  Google Scholar 

  • Brady CM, DasGupta R, Dalton C, Wiseman OJ, Berkley KJ, Fowler CJ (2004) An open-label pilot study of cannabis-based extracts for bladder dysfunction in advanced multiple sclerosis. Mult Scler 10:425–433.

    PubMed  CAS  Google Scholar 

  • Brooks JW, Pryce G, Bisogno T, Jagger SI, Hankey DJR, Brown P, Bridges D, Ledent C, Bifulco M, Rice AS, Di Marzo V, Baker D (2002) Arvanil-induced inhibition of spasticity and persistent pain: further evidence for additional therapeutic non-CB1 cannabinoid receptors. Eur J Pharmacol 439:83–92.

    PubMed  CAS  Google Scholar 

  • Cabranes A, Venderova K, de Lago E, Fezza F, Sanchez A, Mestre L, Valenti M, Garcia-Merino A, Ramos JA, Di Marzo V, Fernandez-Ruiz J (2005) Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis. Neurobiol Dis 20:207–217.

    PubMed  CAS  Google Scholar 

  • Cabranes A, Pryce G, Baker D, Fernández-Ruiz J (2006) Changes in CB1 receptors in motor-related brain structures of chronic relapsing experimental allergic encephalomyelitis mice. Brain Res 1107:199–205.

    PubMed  CAS  Google Scholar 

  • Chong MS, Wolff K, Wise K, Tanton C, Winstock A, Silber E (2006) Cannabis use in patients with multiple sclerosis. Mult Scler 12:646–651.

    PubMed  CAS  Google Scholar 

  • Clark AJ, Ware MA, Yazer E, Murray TJ, Lynch ME (2004) Patterns of cannabis use among patients with multiple sclerosis. Neurology 62:2098–2100.

    PubMed  CAS  Google Scholar 

  • Clifford DB (1983) Tetrahydrocannabinol for tremor in multiple sclerosis. Ann Neurol 13:669–671.

    PubMed  CAS  Google Scholar 

  • Coles AJ, Cox A, Le Page E, Jones J, Trip SA, Deans J, Seaman S, Miller DH, Hale G, Waldmann H, Compston DA (2006) The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J Neurol 253:98–108.

    PubMed  Google Scholar 

  • Compston A, Coles A (2002) Multiple sclerosis. Lancet 359:1221–1231.

    PubMed  Google Scholar 

  • Confavreux C, Vukusic S (2006) Accumulation of irreversible disability in multiple sclerosis: from epidemiology to treatment. Clin Neurol Neurosurg 108:327–332.

    PubMed  Google Scholar 

  • Consroe P, Musty R, Rein J, Tillery W, Pertwee R (1997). The perceived effects of smoked cannabis on patients with multiple sclerosis. Eur Neurol 38:44–48.

    PubMed  CAS  Google Scholar 

  • Coopman K, Smith LD, Wright KL, Ward SG (2007) Temporal variation in CB2R levels following T lymphocyte activation: evidence that cannabinoids modulate CXCL12-induced chemotaxis. Int Immunopharmacol 7:360–371.

    PubMed  CAS  Google Scholar 

  • Correll CC, Phelps PT, Anthes JC, Umland S, Greenfeder S (2004) Cloning and pharmacological characterization of mouse TRPV1. Neurosci Lett 370:55–60.

    PubMed  CAS  Google Scholar 

  • Croxford JL, Miller SD (2003) Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R + WIN55, 212. J Clin Invest 111:1231–1240.

    PubMed  CAS  Google Scholar 

  • Croxford JL, Pryce G, Jackson SJ, Ledent C, Giovannoni G, Pertweee RG, Yamamura T, Baker D (2007) Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. Submitted for publication.

    Google Scholar 

  • De Groat WC (1998) Anatomy of the central neural pathways controlling the lower urinary tract. Eur Urol 34:2–5.

    PubMed  Google Scholar 

  • De Lago E, Ligresti A, de Lago E, Ortar G, Morera E, Cabranes A, Pryce G, Bifulco M, Baker D, Fernadez-Ruiz J, Di Marzo V (2004) In vivo pharmacological actions of two novel inhibitors of anandamide cellular uptake. Eur J Pharmacol 484:249–257.

    PubMed  Google Scholar 

  • De Lago E, Fernández-Ruiz J, Ortega-Gutiérrez S, Cabranes A, Pryce G, Baker D, López-Rodríguez, Ramos JA (2006) UCM707, an inhibitor of anandamide uptake, behaves as a symptom control agent in models of Huntington’s disease and multiple sclerosis, but fails to delay/arrest the progression of different motor-related disorders. Eur Neuropsychopharmacol 16:7–18.

    PubMed  Google Scholar 

  • Docagne F, Muneton V, Clemente D, Ali C, Loria F, Correa F, Hernangomez M, Mestre L, Vivien D, Guaza C (2007) Excitotoxicity in a chronic model of multiple sclerosis: neuroprotective effects of cannabinoids through CB1 and CB2 receptor activation. Mol Cell Neurosci 34:551–561.

    PubMed  CAS  Google Scholar 

  • Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489.

    PubMed  CAS  Google Scholar 

  • Ehde DM, Osborne TL, Hanley MA, Jensen MP, Kraft GH (2006) The scope and nature of pain in persons with multiple sclerosis. Mult Scler 12:629–638.

    PubMed  CAS  Google Scholar 

  • Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, Hoertnagl H, Raine CS, Schneider-Stock R, Nitsch R, Ullrich O (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49:67–79.

    PubMed  CAS  Google Scholar 

  • ElSohly MA, Ross SA, Mehmedic Z, Arafat R, Yi B, Banahan III BF (2000) Potency trends of delta9-THC and other cannabinoids in confiscated marijuana from 1980–1997. J Forensic Sci 45:24–30.

    PubMed  CAS  Google Scholar 

  • Felder CC, Nielsen A, Briley EM, Palkovits M, Priller J, Axelrod J, Nguyen DN, Richardson JM, Riggin RM, Koppel GA, Paul SM, Becker GW (1996) Isolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat. FEBS Lett 393:231–235.

    PubMed  CAS  Google Scholar 

  • Fox P, Bain PG, Glickman S, Carroll C, Zajicek J (2004) The effect of cannabis on tremor in patients with multiple sclerosis. Neurology 62:1105–1109.

    PubMed  CAS  Google Scholar 

  • Franklin A, Stella N (2003) Arachidonylcyclopropylamide increases microglial cell migration through cannabinoid CB2 and abnormal-cannabidiol-sensitive receptors. Eur J Pharmacol 474:195–198.

    PubMed  CAS  Google Scholar 

  • Freeman RM, Adekanmi O, Waterfield MR, Waterfield AE, Wright D, Zajicek J (2006) The effect of cannabis on urge incontinence in patients with multiple sclerosis: a multicentre, randomised placebo-controlled trial (CAMS-LUTS). Int Urogynecol J Pelvic Floor Dysfunct 17:636–641.

    PubMed  CAS  Google Scholar 

  • Fujiwara M, Egashira N (2004) New perspectives in the studies on endocannabinoid and cannabis: abnormal behaviors associate with CB1 cannabinoid receptor and development of therapeutic application. J Pharmacol Sci 96:362–366.

    PubMed  CAS  Google Scholar 

  • Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus. J Neurosci 27:1211–1219.

    PubMed  CAS  Google Scholar 

  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202.

    PubMed  CAS  Google Scholar 

  • Iskedjian M, Bereza B, Gordon A, Piwko C, Einarson TR (2007) Meta-analysis of cannabis based treatments for neuropathic and multiple sclerosis-related pain. Curr Med Res Opin 23:17–24.

    PubMed  CAS  Google Scholar 

  • Iversen L (2005) Long-term effects of exposure to cannabis. Curr Opin Pharmacol 5:69–72.

    PubMed  CAS  Google Scholar 

  • Jackson SL, Pryce G, Diemel DT, Baker D (2005) Cannabinoid receptor null mice are susceptible to neurofilament damage and caspase 3 activation. Neuroscience 134:261–268.

    PubMed  CAS  Google Scholar 

  • Kalsi V, Fowler CJ (2005) Therapy insight: bladder dysfunction associated with multiple sclerosis. Nat Clin Pract Urol 2:492–501.

    PubMed  Google Scholar 

  • Kapoor R, Davies M, Blaker PA, Hall SM, Smith KJ (2003) Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol 53:174–80.

    PubMed  CAS  Google Scholar 

  • Katona S, Kaminski E, Sanders H, Zajicek J (2005) Cannabinoid influence on cytokine profile in multiple sclerosis. Clin Exp Immunol 140:580–585.

    PubMed  CAS  Google Scholar 

  • Kempe K, Hsu FF, Bohrer A, Turk J (1996) Isotope dilution mass spectrometric measurements indicate that arachidonylethanolamide, the proposed endogenous ligand of the cannabinoid receptor, accumulates in rat brain tissue post mortem but is contained at low levels in or is absent from fresh tissue. J Biol Chem 271:17287–17295.

    PubMed  CAS  Google Scholar 

  • Kesselring J, Thompson AJ (1997) Spasticity, ataxia and fatigue in multiple sclerosis. Baillieres Clin Neurol 6: 429–445.

    PubMed  CAS  Google Scholar 

  • Killestein J, Hoogervorst EL, Reif M, Kalkers NF, Van Loenen AC, Staats PG, Gorter RW, Uitdehaag BM, Polman CH (2002) Safety, tolerability, and efficacy of orally administered cannabinoids in MS. Neurology 58:1404–1407.

    PubMed  CAS  Google Scholar 

  • Killestein J, Hoogervorst EL, Reif M, Blauw B, Smits M, Uitdehaag BM, Nagelkerken L, Polman CH (2003) Immunomodulatory effects of orally administered cannabinoids in multiple sclerosis. J Neuroimmunol 137:140–143.

    PubMed  CAS  Google Scholar 

  • Kim K, Moore DH, Makriyannis A, Abood ME (2006) AM1241, a cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. Eur J Pharmacol 542:100–105.

    PubMed  CAS  Google Scholar 

  • Kraft B, Kress HG (2004) Cannabinoids and the immune system. Of men, mice and cells. Schmerz 18:203–210.

    PubMed  CAS  Google Scholar 

  • Ligresti A, Cascio MG, Pryce G, Kulasegram S, Beletskaya I, De Petrocellis L, Saha B, Mahadevan A, Visintin C, Baker D, Wiley J, Martin BR, Razdan RK, Di Marzo V (2006). New potent and selective inhibitors of anandamide re-uptake with anti-spastic activity in a mouse model of multiple sclerosis. Br J Pharmacol 147:83–91.

    PubMed  CAS  Google Scholar 

  • Lombard C, Nagarkatti M, Nagarkatti P (2007) CB2 cannabinoid receptor agonist, JWH-015, triggers apoptosis in immune cells: potential role for CB2-selective ligands as immunosuppressive agents. Clin Immunol 122:259–270.

    PubMed  CAS  Google Scholar 

  • Lunn CA, Fine JS, Rojas-Triana A, Jackson JV, Fan X, Kung TT, Gonsiorek W, Schwarz MA, Lavey B, Kozlowski JA, Narula SK, Lundell DJ, Hipkin RW, Bober LA (2006) A novel cannabinoid peripheral cannabinoid receptor-selective inverse agonist blocks leukocyte recruitment in vivo. J Pharmacol Exp Ther 316:780–788.

    PubMed  CAS  Google Scholar 

  • Lyman WD, Sonett JR, Brosnan CF, Elkin R, Bornstein MB (1989) Delta 9-tetrahydrocannabinol: a novel treatment for experimental autoimmune encephalomyelitis. J Neuroimmunol 23:73–81.

    PubMed  CAS  Google Scholar 

  • Makara JK, Mor M, Fegley D, Szabo SI, Kathuria S, Astarita G, Duranti A, Tontini A, Tarzia G, Rivara S, Freund TF, Piomelli D (2005) Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus.Nat Neurosci 8:1139–1141.

    PubMed  CAS  Google Scholar 

  • Malfitano AM, Matarese G, Pisanti S, Grimaldi C, Laezza C, Bisogno T, Di Marzo V, Lechler RI, Bifulco M (2006) Arvanil inhibits T lymphocyte activation and ameliorates autoimmune encephalomyelitis. J Neuroimmunol 171:110–119.

    PubMed  CAS  Google Scholar 

  • Maresz K, Pryce G, Ponomarev ED, Marsicano G, Croxford JL, Shriver LP, Ledent C, Cheng X, Carrier E, Mann MK, Giovannoni G, Pertwee RG, Yamamura T, Buckley NE, Hillard CJ, Lutz B, Baker D, Dittel BN (2007) Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T Cells. Nat Med 13:492–497.

    PubMed  CAS  Google Scholar 

  • Marquez N, De Petrocellis L, Caballero FJ, Macho A, Schiano-Moriello A, Minassi A, Appendino G, Munoz E, Di Marzo V (2006) Iodinated N-acylvanillamines: potential “multiple-target” anti-inflammatory agents acting via the inhibition of t-cell activation and antagonism at vanilloid TRPV1 channels. Mol Pharmacol 69:1373–1382.

    PubMed  CAS  Google Scholar 

  • Martin RS, Luong LA, Welsh NJ, Eglen RM, Martin GR, MacLennan SJ (2000) Effects of cannabinoid receptor agonists on neuronally evoked contractions of urinary bladder tissues isolated from rat, mouse, pig, dog, monkey and human. Br J Pharmacol 129:1707–1715.

    PubMed  CAS  Google Scholar 

  • Meinck HM, Schonle PW, Conrad B (1989) Effect of cannabinoids on spasticity and ataxia in multiple sclerosis. J Neurol 236:120–122.

    PubMed  CAS  Google Scholar 

  • Mestre L, Correa F, Arevalo-Martin A, Molina-Holgado E, Valenti M, Ortar G, Di Marzo V, Guaza C (2005) Pharmacological modulation of the endocannabinoid system in a viral model of multiple sclerosis. J Neurochem 92:1327–1339.

    PubMed  CAS  Google Scholar 

  • Metz I, Lucchinetti CF, Openshaw H, Garcia-Merino A, Lassmann H, Freedman MS, Atkins HL, Azzarelli B, Kolar OJ, Bruck W (2007). Autologous haematopoietic stem cell transplantation fails to stop demyelination and neurodegeneration in multiple sclerosis. Brain 130:1254–1262.

    PubMed  Google Scholar 

  • Murphy LL, Munoz RM, Adrian BA, Villanua MA (1998) Function of cannabinoid receptors in the neuroendocrine regulation of hormone secretion. Neurobiol Dis 6:432–446.

    Google Scholar 

  • Nadulski T, Pragst F, Weinberg G, Roser P, Schnelle M, Fronk EM, Stadelmann AM (2005). Randomized, double-blind, placebo-controlled study about the effects of cannabidiol (CBD) on the pharmacokinetics of Delta9-tetrahydrocannabinol (THC) after oral application of THC versus standardized cannabis extract. Ther Drug Monit 27:799–810.

    PubMed  CAS  Google Scholar 

  • Ni X, Geller EB, Eppihimer MJ, Eisenstein TK, Adler MW, Tuma RF (2004) Win 55212–2, a cannabinoid receptor agonist, attenuates leukocyte/endothelial interactions in an experimental autoimmune encephalomyelitis model. Mult Scler 10:158–164.

    PubMed  CAS  Google Scholar 

  • Notcutt W, Price M, Miller R, Newport S, Phillips C, Simmons S, Sansom C (2004) Initial experiences with medicinal extracts of cannabis for chronic pain: results from 34 ‘N of 1’ studies. Anaesthesia 59:440–452.

    PubMed  Google Scholar 

  • Oka S, Wakui J, Gokoh M, Kishimoto S, Sugiura T (2006) Suppression by WIN55212–2, a cannabinoid receptor agonist, of inflammatory reactions in mouse ear: interference with the actions of an endogenous ligand, 2-arachidonoylglycerol. Eur J Pharmacol 538:154–162.

    PubMed  CAS  Google Scholar 

  • Page SA, Verhoef MJ (2006) Medicinal marijuana use: experiences of people with multiple sclerosis. Can Fam Physician 52:64–65.

    PubMed  Google Scholar 

  • Page SA, Verhoef MJ, Stebbins RA, Metz LM, Levy JC (2003) Cannabis use as described by people with multiple sclerosis. Can J Neurol Sci 30:201–205.

    PubMed  CAS  Google Scholar 

  • Pertwee RG (1974) Tolerance to the effect of delta1-tetrahydrocannabinol on corticosterone levels in mouse plasma produced by repeated administration of cannabis extract or delta1-tetrahydrocannabinol. Br J Pharmacol 51:391–397.

    PubMed  CAS  Google Scholar 

  • Petro DJ, Ellenberger Jr C (1981) Treatment of human spasticity with delta 9-tetrahydrocannabinol. J Clin Pharmacol 21:413S–416S.

    PubMed  CAS  Google Scholar 

  • Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW, AFFIRM Investigators (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910.

    PubMed  CAS  Google Scholar 

  • Pryce G, Baker D (2007) Control of spasticity in a multiple sclerosis model is CB1, not CB2, cannabinoid receptors. Br J Pharmacol 150:519–525.

    PubMed  CAS  Google Scholar 

  • Pryce G, Ahmed Z, Hankey DRJ, Jackson SL, Croxford JL, Pocock JM, Ledent C, Petzold A, Thompson AJ, Giovannoni G, Cuzner ML, Baker D (2003) Cannabinoids inhibit neurodegeneration in multiple sclerosis models. Brain 126:2191–2202.

    PubMed  Google Scholar 

  • Pryce G, O’Neill JKA, Croxford JL, Amor S, Hankey DRJ, Giovannoni G, Baker D (2005) Immunological tolerance that eliminates relapses, fails to halt secondary progression in a chronic multiple sclerosis model. J Neuroimmunol 165:41–52.

    PubMed  CAS  Google Scholar 

  • Raman C, McAllister SD, Rizvi G, Patel SG, Moore DH, Abood ME (2004) Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid. Amyotroph Lateral Scler Other Motor Neuron Disord 5:33–39.

    PubMed  CAS  Google Scholar 

  • Rog DJ, Nurmikko TJ, Friede T, Young CA (2005) Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 65:812–819.

    PubMed  Google Scholar 

  • Russo E, Guy GW (2006) A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 66:234–246.

    PubMed  CAS  Google Scholar 

  • Sanchez AJ, Gonzalez-Perez P, Galve-Roperh I, Garcia-Merino A (2006) R-(+)-[2, 3-Dihydro-5-methyl-3-(4-morpholinylmethyl)-pyrrolo-[1, 2, 3-de]-1, 4-benzoxazin-6-yl]-1-naphtalenylmethanone ameliorates experimental autoimmune encephalomyelitis and induces encephalitogenic T cell apoptosis: partial involvement of the CB2 receptor. Biochem Pharmacol 72:1697–1706.

    PubMed  CAS  Google Scholar 

  • Schabitz WR, Giuffrida A, Berger C, Aschoff A, Schwaninger M, Schwab S, Piomelli D (2002) Release of fatty acid amides in a patient with hemispheric stroke: a microdialysis study. Stroke 33:2112–2114.

    PubMed  CAS  Google Scholar 

  • Schmid P C, Krebsbach R J, Perry S R, Dettmer TM, Maasson JL, Schmid HH (1995) Occurrence and postmortem generation of anandamide and other long-chain N-acylethanolamines in mammalian brain. FEBS Lett 375:117–120.

    PubMed  CAS  Google Scholar 

  • Schnelle M, Grotenhermen F, Reif M, Gorter RW (1999) Results of a standardized survey on the medical use of cannabis products in the German-speaking area. Forsch Komplementarmed 6:28–36.

    PubMed  Google Scholar 

  • Schon F, Hart PE, Hodgson TL, Pambakian AL, Ruprah M, Williamson EM, Kennard C (1999) Suppression of pendular nystagmus by smoking cannabis in a patient with multiple sclerosis. Neurology 53:2209–2210.

    PubMed  CAS  Google Scholar 

  • Shoemaker JL, Seely KA, Reed RL, Crow JP, Prather PL (2007) The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset. J Neurochem 101:87–98.

    PubMed  CAS  Google Scholar 

  • Svendsen KB, Jensen TS, Hansen HJ, Bach FW (2005) Sensory function and quality of life in patients with multiple sclerosis and pain. Pain 114:473–481.

    PubMed  Google Scholar 

  • Szabo B, Urbanski MJ, Bisogno T, Di Marzo V, Mendiguren A, Baer WU, Freiman I (2006) Depolarization-induced retrograde synaptic inhibition in the mouse cerebellar cortex is mediated by 2-arachidonoylglycerol. J Physiol 577:263–280.

    PubMed  CAS  Google Scholar 

  • Tagliaferro P, Javier Ramos A, Onaivi ES, Evrard SG, Lujilde J, Brusco A (2006) Neuronal cytoskeleton and synaptic densities are altered after a chronic treatment with the cannabinoid receptor agonist WIN 55, 212–2. Brain Res 1085:163–176.

    PubMed  CAS  Google Scholar 

  • Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG (2007) Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol 150:613–823.

    PubMed  CAS  Google Scholar 

  • Ungerleider JT, Andyrsiak T, Fairbanks L, Ellison GW, Myers LW (1987) Delta-9-THC in the treatment of spasticity associated with multiple sclerosis. Adv Alcohol Subst Abuse 7:39–50.

    PubMed  CAS  Google Scholar 

  • Vaney C, Heinzel-Gutenbrunner M, Jobin P, Tschopp F, Gattlen B, Hagen U, Schnelle M, Reif M (2004) Efficacy, safety and tolerability of an orally administered cannabis extract in the treatment of spasticity in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled, crossover study. Mult Scler 10:417–424.

    PubMed  CAS  Google Scholar 

  • van Oosten BW, Killestein J, Mathus-Vliegen EM, Polman CH (2004) Multiple sclerosis following treatment with a cannabinoid receptor-1 antagonist. Mult Scler 10:330–331.

    PubMed  Google Scholar 

  • van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison JS, Marnett LJ, Di Marzo V, Pittman QJ, Patel KD, Sharkey KA (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310:329–332.

    PubMed  Google Scholar 

  • Varvel SA, Anum E, Niyuhire F, Wise LE, Lichtman AH (2005a) Delta9-THC-induced cognitive deficits in mice are reversed by the GABA(A) antagonist bicuculline. Psychopharmacology 178:317–327.

    PubMed  CAS  Google Scholar 

  • Varvel SA, Bridgen DT, Tao Q, Thomas BF, Martin BR, Lichtman AH (2005b) Delta9-tetrahydrocannbinol accounts for the antinociceptive, hypothermic, and cataleptic effects of marijuana in mice. J Pharmacol Exp Ther 314:329–337.

    PubMed  CAS  Google Scholar 

  • Varvel SA, Wiley JL, Yang R, Bridgen DT, Long K, Lichtman AH, Martin BR (2006) Interactions between THC and cannabidiol in mouse models of cannabinoid activity. Psychopharmacology 186:226–234.

    PubMed  CAS  Google Scholar 

  • Wachtel SR, ElSohly MA, Ross SA, Ambre J, de Wit H (2002) Comparison of the subjective effects of Delta9-tetrahydrocannabinol and marijuana in humans. Psychopharmacology 161:331–339.

    PubMed  CAS  Google Scholar 

  • Wade DT, Robson P, House H, Makela P, Aram J (2003) A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clin Rehabil 17:21–29.

    PubMed  Google Scholar 

  • Wade DT, Makela P, Robson P, House H, Bateman C (2004) Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler 10:434–441.

    PubMed  CAS  Google Scholar 

  • Wade DT, Makela PM, House H, Bateman C, Robson P (2006) Long-term use of a cannabis-based medicine in the treatment of spasticity and other symptoms in multiple sclerosis. Mult Scler 12:639–645.

    PubMed  CAS  Google Scholar 

  • Walker JM, Hohmann AG (2005) Cannabinoid mechanisms of pain suppression. Handb Exp Pharmacol 168:509–554.

    PubMed  CAS  Google Scholar 

  • Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 23:1398–1405.

    PubMed  CAS  Google Scholar 

  • Ware MA, Adams H, Guy GW (2005) The medicinal use of cannabis in the UK: results of a nationwide survey. Int J Clin Pract 59:291–295.

    PubMed  CAS  Google Scholar 

  • Weydt P, Hong S, Witting A, Moller T, Stella N, Kliot M (2005) Cannabinol delays symptom onset in SOD1 (G93A) transgenic mice without affecting survival. Amyotroph Lateral Scler Other Motor Neuron Disord 6:182–184.

    PubMed  CAS  Google Scholar 

  • Wilkinson JD, Whalley BJ, Baker D, Pryce G, Constanti A, Gibbons S, Williamson EM (2003) Medicinal cannabis: is delta9-tetrahydrocannabinol necessary for all its effects? J Pharm Pharmacol 55:1687–1694.

    PubMed  CAS  Google Scholar 

  • Wilson RI, Nicoll RA (2002) Endocannabinoid signalling in the brain. Science 296:678–682.

    PubMed  CAS  Google Scholar 

  • Wirguin I, Mechoulam R, Breuer A, Schezen E, Weidenfeld J, Brenner T (1994) Suppression of experimental autoimmune encephalomyelitis by cannabinoids. Immunopharmacology 28:209–214.

    PubMed  CAS  Google Scholar 

  • Witting A, Chen L, Cudaback E, Straiker A, Walter L, Rickman B, Moller T, Brosnan C, Stella N (2006) Experimental autoimmune encephalomyelitis disrupts endocannabinoid-mediated neuroprotection. Proc Natl Acad Sci USA 103:6362–6367.

    PubMed  CAS  Google Scholar 

  • Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR, Anand P (2006) COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 6:12.

    PubMed  Google Scholar 

  • Zajicek J, Fox P, Sanders H, Wright D, Vickery J, Nunn A, Thompson A, UK MS Research Group (2003) Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet 362:1517–1526.

    Google Scholar 

  • Zajicek JP, Sanders HP, Wright DE, Vickery PJ, Ingram WM, Reilly SM, Nunn AJ, Teare LJ, Fox PJ, Thompson AJ (2005) Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow up. J Neurol Neurosurg Psychiatry 76:1664–1669.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Pryce, G., Jackson, S.J., Baker, D. (2008). Cannabinoids for the Control of multiple Sclerosis. In: Köfalvi, A. (eds) Cannabinoids and the Brain. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74349-3_18

Download citation

Publish with us

Policies and ethics