Skip to main content

A Mathematical Model of pHi Regulation in Central CO2 - Chemoreception

  • Chapter
Integration in Respiratory Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 605))

In CO2 chemosensitive neurons, an increase in CO2 (hypercapnia) leads to a maintained reduction in intracellular pH (pHi) while in non-chemosensitive neurons pHi recovery is observed. The precise mechanisms for the differential regulation of pHi recovery between these cell populations remain to be identified; however, studies have begun to explore the role of Na+/H+ exchange (NHE). Here, we compare the results of two different formulations of a mathematical model to begin to explore pHi regulation in central CO2 chemoreception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ritucci, N.A., Chambers-Kersh, L., Dean, J.B. and Putnam R.W. (1998) IntracellularpH regulation from chemosensitive and nonchemosensitive areas of the medulla. Am. J. Physiol. 275 (4 Pt 2), R1152–R1163.

    CAS  PubMed  Google Scholar 

  • Ritucci, N.A., Dean, J.B. and Putnam R.W. (1997) Intracellular pH response to hypercapnia in neurons from chemosensitive areas of the medulla. Am. J. Physiol. 273 (1 Pt 2), R433–R441.

    CAS  PubMed  Google Scholar 

  • Chang H. and Fujita T. (2001) A numerical model of acid-base transport in rat distal tubule. Am. J. Physiol. Renal Physiol. 281(2), F222–F243.

    CAS  PubMed  Google Scholar 

  • Weinstein, A.M. (1995) A kinetically defined Na+/H+ antiporter within a mathematical model of the rat proximal tubule. J. Gen. Physiol. 105(5), 617–641.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Cordovez, J.M., Clausen, C., Moore, L.C., Solomon, I.C. (2008). A Mathematical Model of pHi Regulation in Central CO2 - Chemoreception. In: Poulin, M.J., Wilson, R.J.A. (eds) Integration in Respiratory Control. Advances in Experimental Medicine and Biology, vol 605. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73693-8_53

Download citation

Publish with us

Policies and ethics