Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 12))

  • 710 Accesses

Abstract

Photodynamic therapy uses hirger doses of light and numerous photo-sensitizers to activate the killing of the sensitized tissue via singlet oxygen. The predominant target of PDT has been cancer, but it may also have application to other diseases. The combination of PDT with laser (light) therapy is very appropriate and valuable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee MW. “Combination 532-nm and 1064-nm lasers for noninvasive skin rejuvenation and toning.” Arch Dermatol. 139: 1265–1276 (2003).

    Article  Google Scholar 

  2. Maiya GA, Kumar P, Rao L. “Effect of low intensity helium-neon (He-Ne) laser irradiation on diabetic wound healing dynamics.” Photomed. Laser Surg. 23: 187–190 (2005).

    Article  Google Scholar 

  3. Baugh WP, Kucaba WD. “Nonablative phototherapy for acne vulgaris using the KTP 532 nm laser.” Dermatol. Surg. 31: 1290–1296 (2005).

    Article  Google Scholar 

  4. Woo WK, Jasim ZF, Handley JM. “Evaluating the efficacy of treatment of resistant port-wine stains with variable-pulse 595-nm pulsed dye and 532-nm Nd:YAG lasers.” Dermatol. Surg. 30: 158–162 (2004).

    Article  Google Scholar 

  5. Giuliani A, Fernandez M, Farinelli M, Baratto L, Capra R, Rovetta G, Monteforte P, Giardino L, Calza L. “Very low level laser therapy attenuates edema and pain in experimental models.” Int. J. Tissue React. 26: 29–37 (2004).

    Google Scholar 

  6. Bisland SK. “Strategies for drug delivery: perspectives in photodynamic therapy.” Recent Res. Devel. Bioconj. Chem. 2: 1–43 (2005).

    Google Scholar 

  7. Bisland SK, Lilge L, Lin A, Rusnov R, Bogaards A, Wilson BC. “Metronomic PDT as a new paradigm for photodynamic therapy: rationale and pre-clinical evaluation of technical feasibility for treating malignant brain tumors.” Photochem. Photobiol. 80: 22–30 (2004).

    Article  Google Scholar 

  8. Oschner M. “Photophysical and photobiological processes in the photodynamic therapy of tumors.” J. Photoch. Photobiol. B. 39: 1–18 (1997).

    Google Scholar 

  9. Moan J, Berg K. “Photochemotherapy of cancer: experimental research.” Photochem. Photo-biol. 55: 931–948 (1992).

    Article  Google Scholar 

  10. Henderson BW, Dougherty TJ. “How does photodynamic therapy work?” Photochem. Photobiol. 55: 145–157 (1992).

    Article  Google Scholar 

  11. Ochsner M. “Photophysical and photobiological processes in the photodynamic therapy of tumors.” J. Photochem. Photobiol. B. 39: 1–18 (1997).

    Article  Google Scholar 

  12. Godar DE. “Light and death: photons and apoptosis.” J. Investig. Dermatol. Symp. Proc. 4: 17–23 (1999).

    Article  Google Scholar 

  13. Kriska T, Korecz L, Nernes I, Gal D. “Physico-chemical modeling of the role of free radicals in photodynamic therapy III. Interactions of stable free radicals with excited photosensitizers studied by kinetic ESR spectroscopy.” Biochem. Biophys. Res. Commun. 215: 192–198 (1995).

    Article  Google Scholar 

  14. Karu T. “Primary and secondary mechanisms of action of visible to near-IR radiation on cells.” J. Photochem. Photobiol. B. 49: 1–17 (1999).

    Article  Google Scholar 

  15. Karu T, Pyatibrat LV, Afanasyeva NI. “Cellular effects of low power laser therapy can be mediated by nitric oxide.” Laser. Surg. Med. 36: 307–314 (2005).

    Article  Google Scholar 

  16. Duan R, Liu TC, Li Y, Guo H, Yao LB. “Signal transduction pathways involved in low intensity He-Ne laser-induced respiratory burst in bovine neutrophils: a potential mechanism of low intensity laser biostimulation.” Laser. Surg. Med. 29: 174–178 (2001).

    Article  Google Scholar 

  17. Brown GC. “Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase.” Biochem. Biophys. Acta. 1504: 46–57 (2001).

    Article  Google Scholar 

  18. Cooper CE. “Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector?” Trends Biochem. Sci. 27: 33–39 (2002).

    Article  Google Scholar 

  19. Young AR. “Chromopores in human skin.” Phys. Med. Biol. 42: 789–802 (1997).

    Article  Google Scholar 

  20. Nunez SC, Nogueira GE, Ribeiro MS, Garcez AS, Lage-Marques JL. “He-Ne laser effects on blood microcirculation during wound healing: a method of in vivo study through laser Doppler flowmetry.” Laser Surg. Med. 35: 363–368 (2004).

    Article  Google Scholar 

  21. Laakso EL, Cabot PJ. “Nociceptive scores and endorphin-containing cells reduced by low-level laser therapy (LLLT) in inflamed paws of Wistar rat.” Photomed Laser Surg. 23: 32–35 (2005).

    Article  Google Scholar 

  22. Karu T. “High-Tech helps to estimate cellular mechanisms of low power laser therapy.” Laser Surg. Med. 34: 298–299 (2004).

    Article  Google Scholar 

  23. Kennedy JC, Pottier RH. “Endogenous protoporphyrin IX, clinically useful photosensitizer for photodynamic therapy.” J. Photochem. Photobiol. B. 14: 275–292 (1991).

    Article  Google Scholar 

  24. Gourley PL, Hendricks JK, McDonald AE, Copeland RG, Barrett KE, Gourley CR, Singh KK, Naviaux RK. “Mitochondrial correlation microscopy and nanolaser spectroscopy - new tools for biophotonic detection of cancer in single cells.” Technol. Cancer Res. Treat. 4: 585–592 (2005).

    Google Scholar 

  25. Sharkey SM, Wilson BC, Moorehead R, Singh G. “Mitochondrial alterations in photodynamic therapy-resistant cells.” Cancer Res. 53: 4994–4999 (1993).

    Google Scholar 

  26. Wendler G, Lindemann P, Lacapere J-J, Papadopoulos V. “Protoporphyrin IX binding and transport by recombinant mouse PBR.” Biochem. Biophys. Res. Commun. 311: 847–852 (2003).

    Article  Google Scholar 

  27. Rebeiz N, Arkins S, Kelley KW, Rebeiz CA. “Enhancement of coproporphyrinogen III transport into isolated transformed leukocyte mitochondria by ATP.” Arch. Biochem. Bio-phys. 2: 475–481 (1996).

    Article  Google Scholar 

  28. Verma A, Facchina SL, Hirsch DJ, Song S-Y, Dillahey LF, Williams JR, Snyder SH. “Photodynamic tumour therapy: mitochondrial benzodiazepine receptors as a therapeutic target.” Mol. Med. 4: 40–45 (1998).

    Google Scholar 

  29. Pastorino JG, Simbula G, Gilfor E, Hoak JB, Farber JL. “Protoporphyrin IX endogenous ligand of the peripheral benzodiazepine receptor, potentiates induction of the mitochondrial permeability transition and the killing of cultures hepatocytes by rotenone.” J. Biol. Chem. 269: 31041–31046 (1994).

    Google Scholar 

  30. Ratcliffe SL, Matthews EK. “Modification of the photodynamic action of d-aminolaevulinic acid (ALA) on rat pancreatoma cells by mitochondrial benzodiazepine receptor ligands.” Br. J. Cancer. 71: 300–305 (1995).

    Article  Google Scholar 

  31. Mesenholler M, Matthews EK. “A key role for the mitochondrial benzodiazepine receptor in cellular photosensitization with delta-aminolaevulinic acid.” Eur. J. Pharmacol. 406: 171–180 (2000).

    Article  Google Scholar 

  32. Krueger KE. “Molecular and functional properties of mitochondrial benzodiazepine receptors.” Biochim. Biophys. Acta. 1241: 453–470 (1995).

    Google Scholar 

  33. Bisland SK, Wilson BC. “To begin at the beginning: the science of bio-stimulation in cells and tissues.” Proc. SPIE. 6140 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this paper

Cite this paper

Bisland, S.K. (2008). Enhancing Photodynamic Effect Using Low-Level Light Therapy. In: Waynant, R., Tata, D.B. (eds) Proceedings of Light-Activated Tissue Regeneration and Therapy Conference. Lecture Notes in Electrical Engineering, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71809-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71809-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71808-8

  • Online ISBN: 978-0-387-71809-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics