Skip to main content

Pericytes, the Mural Cells of the Microvascular System

  • Chapter
Book cover Angiogenesis

Endothelial cells and pericytes regulate blood vessel formation, maturation and specification, all of which requires the orchestration of tightly regulated molecules. Communication between these two distinct vascular cell types occurs by direct cell contact and by paracrine signaling pathways. Pericytes and endotheslial cells are interdependent and defects in either can affect the vascular system. Loss of pericytes can lead to hyperdilated and hemorrhagic blood vessels, which lead to conditions such as edema, diabetic retinopathy, and even embryonic lethality. In tumors, although pericytes are less abundant and more loosely attached, pericyte dysfunction can result in increased endothelial cell apoptosis and metastatic spread, providing evidence that tumor pericytes are implicated in vessel maintenance, endothelial cell survival and potentially tumor dormancy. Based on their functional importance, pericytes present a complimentary target to endothelial cells in tumors. Therefore, combinatorial targeting of both cell types might have the potential to more efficiently diminish tumor vessels and halt subsequent tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirschi, K. K., and D’Amore, P. A. (1996). Pericytes in the microvasculature. Cardiovasc Res 32, 687.

    PubMed  CAS  Google Scholar 

  2. Mandarino, L. J., Sundarraj, N., Finlayson, J., and Hassell, H. R. (1993). Regulation of fibronectin and laminin synthesis by retinal capillary endothelial cells and pericytes in vitro. Exp Eye Res 57, 609–621.

    Article  PubMed  CAS  Google Scholar 

  3. Armulik, A., Abramsson, A., and Betsholtz, C. (2005). Endothelial/pericyte interactions. Circ Res 97, 512–523.

    Article  PubMed  CAS  Google Scholar 

  4. Rucker, H. K., Wynder, H. J., and Thomas, W. E. (2000). Cellular mechanisms of CNS pericytes. Brain Res Bull 51, 363–369.

    Article  PubMed  CAS  Google Scholar 

  5. Gerhardt, H., and Betsholtz, C. (2003). Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res.

    Google Scholar 

  6. Orlidge, A., and D’Amore, P. A. (1987). Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol 105, 1455–1462.

    Article  PubMed  CAS  Google Scholar 

  7. Bergers, G., and Song, S. (2005). The role of pericytes in blood-vessel formation and maintenance. Neuro-oncol 7, 452–464.

    Article  PubMed  CAS  Google Scholar 

  8. Li, Z., Colucci-Guyon, E., Pincon-Raymond, M., Mericskay, M., Pournin, S., Paulin, D., and Babinet, C. (1996). Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev Biol 175, 362–366.

    Article  PubMed  CAS  Google Scholar 

  9. Milner, D. J., Weitzer, G., Tran, D., Bradley, A., and Capetanaki, Y. (1996). Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134, 1255–1270.

    Article  PubMed  CAS  Google Scholar 

  10. Ronnov-Jessen, L., and Petersen, O. W. (1996). A function for filamentous alpha-smooth muscle actin: retardation of motility in fibroblasts. J Cell Biol 134, 67–80.

    Article  PubMed  CAS  Google Scholar 

  11. Stallcup, W. B. (2002). The NG2 proteoglycan: past insights and future prospects. J Neurocytol 31, 423–435.

    Article  PubMed  CAS  Google Scholar 

  12. Ozerdem, U., and Stallcup, W. B. (2004). Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis 7, 269–276.

    Article  PubMed  CAS  Google Scholar 

  13. Lindahl, P., Johansson, B., Leveen, P., and Betsholtz, C. (1997). Pericyte loss and microaneurysm formation inPDGF-B-deficient mice. Science 126, 3047–3055.

    Google Scholar 

  14. Song, S., Ewald, A. J., Stallcup, W., Werb, Z., and Bergers, G. (2005). PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7, 870–879.

    Article  PubMed  CAS  Google Scholar 

  15. Leveen, P., Pekny, M., Gebre-Medhin, S., Swolin, B., Larsson, E., and Betsholtz, C. (1994). Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8, 1875–1887.

    Article  PubMed  CAS  Google Scholar 

  16. Soriano, P. (1994). Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8, 1888–1896.

    Article  PubMed  CAS  Google Scholar 

  17. Bondjers, C., He, L., Takemoto, M., Norlin, J., Asker, N., Hellstrom, M., Lindahl, P., and Betsholtz, C. (2006). Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. Faseb J 20, 1703–1705.

    Article  PubMed  CAS  Google Scholar 

  18. Bondjers, C., Kalen, M., Hellstrom, M., Scheidl, S. J., Abramsson, A., Renner, O., Lindahl, P., Cho, H., Kehrl, J., and Betsholtz, C. (2003). Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol 162, 721–729.

    PubMed  CAS  Google Scholar 

  19. Berger, M., Bergers, G., Arnold, B., Hammerling, G. J., and Ganss, R. (2005). Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood 105, 1094–1101.

    Article  PubMed  CAS  Google Scholar 

  20. Peppiatt, C. M., Howarth, C., Mobbs, P., and Attwell, D. (2006). Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704.

    Article  PubMed  CAS  Google Scholar 

  21. Endemann, D. H., and Schiffrin, E. L. (2004a). Endothelial dysfunction. J Am Soc Nephrol 15, 1983–1992.

    Article  PubMed  CAS  Google Scholar 

  22. Endemann, D. H., and Schiffrin, E. L. (2004b). Nitric oxide, oxidative excess, and vascular complications of diabetes mellitus. Curr Hypertens Rep 6, 85–89.

    Article  PubMed  Google Scholar 

  23. Vanhoutte, P. M. (2003). Endothelial control of vasomotor function: from health to coronary disease. Circ J 67, 572–575.

    Article  PubMed  CAS  Google Scholar 

  24. Tilton, R. G., Kilo, C., and Williamson, J. R. (1979). Pericyte-endothelial relationships in cardiac and skeletal muscle capillaries. Microvasc Res 18, 325–335.

    Article  PubMed  CAS  Google Scholar 

  25. Sims, D. E. (2000). Diversity within pericytes. Clin Exp Pharmacol Physiol 27, 842–846.

    Article  PubMed  CAS  Google Scholar 

  26. Ballabh, P., Braun, A., and Nedergaard, M. (2004). The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16, 1–13.

    Article  PubMed  CAS  Google Scholar 

  27. Cleaver, O., and Melton, D. A. (2003). Endothelial signaling during development. Nat Med 9, 661–668.

    Article  PubMed  CAS  Google Scholar 

  28. Thomas, W. E. (1999). Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 31, 42–57.

    Article  PubMed  CAS  Google Scholar 

  29. Balabanov, R., Washington, R., Wagnerova, J., and Dore-Duffy, P. (1996). CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2. Microvasc Res 52, 127–142.

    Article  PubMed  CAS  Google Scholar 

  30. Betsholtz, C. (2004). Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15, 215–228.

    Article  PubMed  CAS  Google Scholar 

  31. Suematsu, M., and Aiso, S. (2001). Professor Toshio Ito: a clairvoyant in pericyte biology. Keio J Med 50, 66–71.

    PubMed  CAS  Google Scholar 

  32. Sato, M., Suzuki, S., and Senoo, H. (2003). Hepatic stellate cells: unique characteristics in cell biology and phenotype. Cell Struct Funct 28, 105–112.

    Article  PubMed  CAS  Google Scholar 

  33. Carmeliet, P. (2003). Angiogenesis in health and disease. Nat Med 9, 653–660.

    Article  PubMed  CAS  Google Scholar 

  34. Bergwerff, M., Verberne, M. E., DeRuiter, M. C., Poelmann, R. E., and Gittenberger-de Groot, A. C. (1998). Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 82, 221–231.

    PubMed  CAS  Google Scholar 

  35. Etchevers, H. C., Couly, G., and Le Douarin, N. M. (2002). Morphogenesis of the branchial vascular sector. Trends Cardiovasc Med 12, 299–304.

    Article  PubMed  Google Scholar 

  36. Creazzo, T. L., Godt, R. E., Leatherbury, L., Conway, S. J., and Kirby, M. L. (1998). Role of cardiac neural crest cells in cardiovascular development. Annu Rev Physiol 60, 267–286.

    Article  PubMed  CAS  Google Scholar 

  37. Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A., and Betsholtz, C. (1999). Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126, 3047–3055.

    PubMed  CAS  Google Scholar 

  38. Chen, S., and Lechleider, R. J. (2004). Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res 94, 1195–1202.

    Article  PubMed  CAS  Google Scholar 

  39. Darland, D. C., and D’Amore, P. A. (2001). TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis 4, 11–20.

    Article  PubMed  CAS  Google Scholar 

  40. Dickson, M. C., Martin, J. S., Cousins, F. M., Kulkarni, A. B., Karlsson, S., and Akhurst, R. J. (1995). Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121, 1845–1854.

    PubMed  CAS  Google Scholar 

  41. Oshima, M., Oshima, H., and Taketo, M. M. (1996). TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179, 297–302.

    Article  PubMed  CAS  Google Scholar 

  42. Li, D. Y., Sorensen, L. K., Brooke, B. S., Urness, L. D., Davis, E. C., Taylor, D. G., Boak, B. B., and Wendel, D. P. (1999). Defective angiogenesis in mice lacking endoglin. Science 284, 1534–1537.

    Article  PubMed  CAS  Google Scholar 

  43. Carvalho, R. L., Jonker, L., Goumans, M. J., Larsson, J., Bouwman, P., Karlsson, S., Dijke, P. T., Arthur, H. M., and Mummery, C. L. (2004). Defective paracrine signalling by TGFbeta in yolk sac vasculature of endoglin mutant mice: a paradigm for hereditary haemorrhagic telangiectasia. Development 131, 6237–6247.

    Article  PubMed  CAS  Google Scholar 

  44. Carmeliet, P. (2004). Manipulating angiogenesis in medicine. J Intern Med 255, 538–561.

    Article  PubMed  Google Scholar 

  45. Yamashita, J., Itoh, H., Hirashima, M., Ogawa, M., Nishikawa, S., Yurugi, T., Naito, M., and Nakao, K. (2000). Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92–96.

    Article  PubMed  CAS  Google Scholar 

  46. Gittenberger-de Groot, A. C., DeRuiter, M. C., Bergwerff, M., and Poelmann, R. E. (1999). Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler Thromb Vasc Biol 19, 1589–1594.

    PubMed  CAS  Google Scholar 

  47. Nakajima, Y., Mironov, V., Yamagishi, T., Nakamura, H., and Markwald, R. R. (1997). Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial cushion tissue: a role for transforming growth factor beta3. Dev Dyn 209, 296–309.

    Article  PubMed  CAS  Google Scholar 

  48. Dayoub, S., Devlin, H., and Sloan, P. (2003). Evidence for the formation of metaplastic bone from pericytes in calcifying fibroblastic granuloma. J Oral Pathol Med 32, 232–236.

    PubMed  CAS  Google Scholar 

  49. Doherty, M. J., Ashton, B. A., Walsh, S., Beresford, J. N., Grant, M. E., and Canfield, A. E. (1998). Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13, 828–838.

    Article  PubMed  CAS  Google Scholar 

  50. Farrington-Rock, C., Crofts, N. J., Doherty, M. J., Ashton, B. A., Griffin-Jones, C., and Canfield, A. E. (2004). Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110, 2226–2232.

    Article  PubMed  CAS  Google Scholar 

  51. Dellavalle, A., Sampaolesi, M., Tonlorenzi, R., Tagliafico, E., Sacchetti, B., Perani, L., Innocenzi, A., Galvez, B. G., Messina, G., Morosetti, R., et al. (2007). Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9, 255–267.

    Article  PubMed  CAS  Google Scholar 

  52. Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., and Betsholtz, C. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161, 1163–1177.

    Article  PubMed  CAS  Google Scholar 

  53. Ozerdem, U., Grako, K. A., Dahlin-Huppe, K., Monosov, E., and Stallcup, W. B. (2001). NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222, 218–227.

    Article  PubMed  CAS  Google Scholar 

  54. Ozerdem, U., and Stallcup, W. B. (2003). Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6, 241–249.

    Article  PubMed  CAS  Google Scholar 

  55. Reynolds, L. P., Grazul-Bilska, A. T., and Redmer, D. A. (2000). Angiogenesis in the corpus luteum. Endocrine 12, 1–9.

    Article  PubMed  CAS  Google Scholar 

  56. Hirschi, K. K., Rohovsky, S. A., and D’Amore, P. A. (1998). PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141, 805–814.

    Article  PubMed  CAS  Google Scholar 

  57. Lindahl, P., Hellstrom, M., Kalen, M., and Betsholtz, C. (1998). Endothelial-perivascular cell signaling in vascular development: lessons from knockout mice. Curr Opin Lipidol 9, 407–411.

    Article  PubMed  CAS  Google Scholar 

  58. Enge, M., Bjarnegard, M., Gerhardt, H., Gustafsson, E., Kalen, M., Asker, N., Hammes, H. P., Shani, M., Fassler, R., and Betsholtz, C. (2002). Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. Embo J 21, 4307–4316.

    Article  PubMed  CAS  Google Scholar 

  59. Betsholtz, C., Karlsson, L., and Lindahl, P. (2001). Developmental roles of platelet-derived growth factors. Bioessays 23, 494–507.

    Article  PubMed  CAS  Google Scholar 

  60. Tallquist, M. D., French, W. J., and Soriano, P. (2003). Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol 1, E52.

    Article  PubMed  CAS  Google Scholar 

  61. Sundberg, C., Kowanetz, M., Brown, L. F., Detmar, M., and Dvorak, H. F. (2002). Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab Invest 82, 387–401.

    PubMed  CAS  Google Scholar 

  62. Suri, C., Jones, P. F., Patan, S., Bartunkova, S., Maisonpierre, P. C., Davis, S., Sato, T. N., and Yancopoulos, G. D. (1996). Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180.

    Article  PubMed  CAS  Google Scholar 

  63. Dumont, D. J., Gradwohl, G., Fong, G. H., Puri, M. C., Gertsenstein, M., Auerbach, A., and Breitman, M. L. (1994). Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8, 1897–1909.

    Article  PubMed  CAS  Google Scholar 

  64. Sato, T. N., Tozawa, Y., Deutsch, U., Wolburg-Buchholz, K., Fujiwara, Y., Gendron-Maguire, M., Gridley, T., Wolburg, H., Risau, W., and Qin, Y. (1995). Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376, 70–74.

    Article  PubMed  CAS  Google Scholar 

  65. Iurlaro, M., Scatena, M., Zhu, W. H., Fogel, E., Wieting, S. L., and Nicosia, R. F. (2003). Rat aorta-derived mural precursor cells express the Tie2 receptor and respond directly to stimulation by angiopoietins. J Cell Sci 116, 3635–3643.

    Article  PubMed  CAS  Google Scholar 

  66. Suri, C., McClain, J., Thurston, G., McDonald, D. M., Zhou, H., Oldmixon, E. H., Sato, T. N., and Yancopoulos, G. D. (1998). Increased vascularization in mice overexpressing angiopoietin-1. Science 282, 468–471.

    Article  PubMed  CAS  Google Scholar 

  67. Thurston, G., Suri, C., Smith, K., McClain, J., Sato, T. N., Yancopoulos, G. D., and McDonald, D. M. (1999). Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286, 2511–2514.

    Article  PubMed  CAS  Google Scholar 

  68. Uemura, A., Ogawa, M., Hirashima, M., Fujiwara, T., Koyama, S., Takagi, H., Honda, Y., Wiegand, S. J., Yancopoulos, G. D., and Nishikawa, S. (2002). Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest 110, 1619–1628.

    PubMed  CAS  Google Scholar 

  69. Gale, N. W., Thurston, G., Hackett, S. F., Renard, R., Wang, Q., McClain, J., Martin, C., Witte, C., Witte, M. H., Jackson, D., et al. (2002). Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3, 411–423.

    Article  PubMed  CAS  Google Scholar 

  70. Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60.

    Article  PubMed  CAS  Google Scholar 

  71. Hammes, H. P., Lin, J., Wagner, P., Feng, Y., Vom Hagen, F., Krzizok, T., Renner, O., Breier, G., Brownlee, M., and Deutsch, U. (2004). Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 53, 1104–1110.

    Article  PubMed  CAS  Google Scholar 

  72. Zhang, L., Yang, N., Park, J. W., Katsaros, D., Fracchioli, S., Cao, G., O’Brien-Jenkins, A., Randall, T. C., Rubin, S. C., and Coukos, G. (2003). Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 63, 3403–3412.

    PubMed  CAS  Google Scholar 

  73. Hanahan, D. (1997). Signaling vascular morphogenesis and maintenance. Science 277, 48–50.

    Article  PubMed  CAS  Google Scholar 

  74. Vikkula, M., Boon, L. M., Carraway, K. L., 3rd, Calvert, J. T., Diamonti, A. J., Goumnerov, B., Pasyk, K. A., Marchuk, D. A., Warman, M. L., Cantley, L. C., et al. (1996). Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87, 1181–1190.

    Article  PubMed  CAS  Google Scholar 

  75. Hla, T. (2001). Sphingosine 1-phosphate receptors. Prostaglandins 64, 135–142.

    PubMed  CAS  Google Scholar 

  76. Allende, M. L., Yamashita, T., and Proia, R. L. (2003). G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 102, 3665–3667.

    Article  PubMed  CAS  Google Scholar 

  77. De Palma, M., Venneri, M. A., Galli, R., Sergi, L. S., Politi, L. S., Sampaolesi, M., and Naldini, L. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226.

    Article  PubMed  CAS  Google Scholar 

  78. Grunewald, M., Avraham, I., Dor, Y., Bachar-Lustig, E., Itin, A., Yung, S., Chimenti, S., Landsman, L., Abramovitch, R., and Keshet, E. (2006). VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124, 175–189.

    Article  PubMed  CAS  Google Scholar 

  79. Jin, D. K., Shido, K., Kopp, H. G., Petit, I., Shmelkov, S. V., Young, L. M., Hooper, A. T., Amano, H., Avecilla, S. T., Heissig, B., et al. (2006). Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4(+) hemangiocytes. Nat Med.

    Google Scholar 

  80. Rajantie, I., Ilmonen, M., Alminaite, A., Ozerdem, U., Alitalo, K., and Salven, P. (2004). Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104, 2084–2086.

    Article  PubMed  CAS  Google Scholar 

  81. Kokovay, E., Li, L., and Cunningham, L. A. (2006). Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab 26, 545–555.

    Article  PubMed  CAS  Google Scholar 

  82. Ozerdem, U., Alitalo, K., Salven, P., and Li, A. (2005). Contribution of bone marrow-derived pericyte precursor cells to corneal vasculogenesis. Invest Ophthalmol Vis Sci 46, 3502–3506.

    Article  PubMed  Google Scholar 

  83. Bergers, G., and Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3, 401–410.

    Article  PubMed  CAS  Google Scholar 

  84. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E., and Hanahan, D. (2003). Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111, 1287–1295.

    PubMed  CAS  Google Scholar 

  85. Hanahan, D., and Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353.

    Article  PubMed  CAS  Google Scholar 

  86. Folkman, J. (2000). Tumor angiogenesis, In Cancer Medicine, H. et al., ed. (Hamilton, Ontario: B C Decker).

    Google Scholar 

  87. Cai, J., and Boulton, M. (2002). The pathogenesis of diabetic retinopathy: old concepts and new questions. Eye 16, 242–260.

    Article  PubMed  CAS  Google Scholar 

  88. Hammes, H. P., Lin, J., Renner, O., Shani, M., Lundqvist, A., Bets holtz, C., Brownlee, M., and Deutsch, U. (2002). Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51, 3107–3112.

    Article  PubMed  CAS  Google Scholar 

  89. Wilkinson-Berka, J. L., Babic, S., De Gooyer, T., Stitt, A. W., Jaworski, K., Ong, L. G., Kelly, D. J., and Gilbert, R. E. (2004). Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy. Am J Pathol 164, 1263–1273.

    PubMed  CAS  Google Scholar 

  90. Campochiaro, P. A. (2004). Ocular neovascularisation and excessive vascular permeability. Expert Opin Biol Ther 4, 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  91. Miller, J. W., Adamis, A. P., and Aiello, L. P. (1997). Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Metab Rev 13, 37–50.

    Article  PubMed  CAS  Google Scholar 

  92. Benjamin, L. E. (2001). Glucose, VEGF-A, and diabetic complications. Am J Pathol 158, 1181–1184.

    PubMed  CAS  Google Scholar 

  93. Aiello, L. P., Pierce, E. A., Foley, E. D., Takagi, H., Chen, H., Riddle, L., Ferrara, N., King, G. L., and Smith, L. E. (1995). Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 92, 10457–10461.

    Article  PubMed  CAS  Google Scholar 

  94. McLeod, D. S., Taomoto, M., Cao, J., Zhu, Z., Witte, L., and Lutty, G. A. (2002). Localization of VEGF receptor-2 (KDR/Flk-1) and effects of blocking it in oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 43, 474–482.

    PubMed  Google Scholar 

  95. Robbins, S. G., Rajaratnam, V. S., and Penn, J. S. (1998). Evidence for upregulation and redistribution of vascular endothelial growth factor (VEGF) receptors flt-1 and flk-1 in the oxygen-injured rat retina. Growth Factors 16, 1–9.

    Article  PubMed  CAS  Google Scholar 

  96. Lindblom, P., Gerhardt, H., Liebner, S., Abramsson, A., Enge, M., Hellstrom, M., Backstrom, G., Fredriksson, S., Landegren, U., Nystrom, H. C., et al. (2003). Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17, 1835–1840.

    Article  PubMed  CAS  Google Scholar 

  97. Jain, R. K. (2003). Molecular regulation of vessel maturation. Nat Med 9, 685–693.

    Article  PubMed  CAS  Google Scholar 

  98. Morikawa, S., Baluk, P., Kaidoh, T., Haskell, A., Jain, R. K., and McDonald, D. M. (2002). Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160, 985–1000.

    PubMed  Google Scholar 

  99. Abramsson, A., Berlin, O., Papayan, H., Paulin, D., Shani, M., and Betsholtz, C. (2002). Analysis of mural cell recruitment to tumor vessels. Circulation 105, 112–117.

    Article  PubMed  CAS  Google Scholar 

  100. Baluk, P., Hashizume, H., and McDonald, D. M. (2005). Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15, 102–111.

    Article  PubMed  CAS  Google Scholar 

  101. Abramsson, A., Lindblom, P., and Betsholtz, C. (2003). Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112, 1142–1151.

    PubMed  CAS  Google Scholar 

  102. Abramsson, A., Kurup, S., Busse, M., Yamada, S., Lindblom, P., Schallmeiner, E., Stenzel, D., Sauvaget, D., Ledin, J., Ringvall, M., et al. (2007). Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev 21, 316–331.

    Article  PubMed  CAS  Google Scholar 

  103. Kurup, S., Abramsson, A., Li, J. P., Lindahl, U., Kjellen, L., Betsholtz, C., Gerhardt, H., and Spillmann, D. (2006). Heparan sulphate requirement in platelet-derived growth factor B-mediated pericyte recruitment. Biochem Soc Trans 34, 454–455.

    Article  PubMed  CAS  Google Scholar 

  104. Reinmuth, N., Liu, W., Jung, Y. D., Ahmad, S. A., Shaheen, R. M., Fan, F., Bucana, C. D., McMahon, G., Gallick, G. E., and Ellis, L. M. (2001). Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. Faseb J 15, 1239–1241.

    PubMed  CAS  Google Scholar 

  105. Shaheen, R. M., Tseng, W. W., Davis, D. W., Liu, W., Reinmuth, N., Vellagas, R., Wieczorek, A. A., Ogura, Y., McConkey, D. J., Drazan, K. E., et al. (2001). Tyrosine kinase inhibition of multiple angiogenic growth factor receptors improves survival in mice bearing colon cancer liver metastases by inhibition of endothelial cell survival mechanisms. Cancer Res 61, 1464–1468.

    PubMed  CAS  Google Scholar 

  106. Benjamin, L. E., Golijanin, D., Itin, A., Pode, D., and Keshet, E. (1999). Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal [see comments]. J Clin Invest 103, 159–165.

    Article  PubMed  CAS  Google Scholar 

  107. Xian, X., Hakansson, J., Stahlberg, A., Lindblom, P., Betsholtz, C., Gerhardt, H., and Semb, H. (2006). Pericytes limit tumor cell metastasis. J Clin Invest 116, 642–651.

    Article  PubMed  CAS  Google Scholar 

  108. Yonenaga, Y., Mori, A., Onodera, H., Yasuda, S., Oe, H., Fujimoto, A., Tachibana, T., and Imamura, M. (2005). Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology 69, 159–166.

    Article  PubMed  Google Scholar 

  109. Ramaswamy, S., Ross, K. N., Lander, E. S., and Golub, T. R. (2003). A molecular signature of metastasis in primary solid tumors. Nat Genet 33, 49–54.

    Article  PubMed  CAS  Google Scholar 

  110. Pietras, K., and Hanahan, D. (2004). A Multitargeted, Metronomic, and Maximum-Tolerated Dose “Chemo-Switch” Regimen is Antiangiogenic, Producing Objective Responses and Survival Benefit in a Mouse Model of Cancer. J Clin Oncol.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bergers, G. (2008). Pericytes, the Mural Cells of the Microvascular System. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics