Skip to main content

Development of Thalidomide and Its IMiD Derivatives

  • Chapter
Angiogenesis

Despite its controversial past, the establishment of thalidomide as an anti-inflammatory, immunomodulatory, and antiangiogenic agent bolstered intense research into its mechanism of action and therapeutic range. The precise pharmacologic mechanism through which thalidomide exerts its activity is complex and not fully understood. The enhancement of thalidomide’s immunomodulatory effects while minimizing the adverse reactions brought about a class of novel analogues termed the Immunomodulatory drugs (IMiDs). This chapter reviews and highlights some of the clinical activities and development of thalidomide and its IMiDs derivatives in the treatment of hematological cancers and various solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenz W. A short history of thalidomide embryopathy. Teratology 1988;38:203–15.

    Article  PubMed  CAS  Google Scholar 

  2. Stephens T, Brynner R. Dark Remedy: The Impact of Thalidomide and Its Revival as a Vital Medicine. Cambridge, MA: Perseus Publishing, 2001.

    Google Scholar 

  3. Kelsey FO. Thalidomide update: regulatory aspects. Teratology 1988;38:221–6.

    Article  PubMed  CAS  Google Scholar 

  4. Mellin GW, Katzenstein M. The saga of thalidomide. Neuropathy to embryopathy, with case reports of congenital anomalies. N Engl J Med 1962;267:1238–44 concl.

    PubMed  CAS  Google Scholar 

  5. Teo SK, Resztak KE, Scheffler MA, et al. Thalidomide in the treatment of leprosy. Microbes Infect 2002;4:1193–202.

    Article  PubMed  CAS  Google Scholar 

  6. D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 1994;91:4082–5.

    Article  PubMed  Google Scholar 

  7. Bauer KS, Dixon SC, Figg WD. Inhibition of angiogenesis by thalidomide requires metabolic activation, which is species-dependent. Biochem Pharmacol 1998;55:1827–34.

    Article  PubMed  CAS  Google Scholar 

  8. Fujita K, Asami Y, Murata E, et al. Effects of thalidomide, cytochrome P-450 and TNF-α on angiogenesis in a three-dimensional collagen gel-culture. Okajimas Folia Anat Jpn 2002;79:101–6.

    Article  PubMed  CAS  Google Scholar 

  9. Marks MG, Shi J, Fry MO, et al. Effects of putative hydroxylated thalidomide metabolites on blood vessel density in the chorioallantoic membrane (CAM) assay and on tumor and endothelial cell proliferation. Biol Pharm Bull 2002;25:597–604.

    Article  PubMed  CAS  Google Scholar 

  10. Kenyon BM, Browne F, D’Amato RJ. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 1997;64:971–8.

    Article  PubMed  CAS  Google Scholar 

  11. Price DK, Ando Y, Kruger EA, et al. 5’-OH-thalidomide, a metabolite of thalidomide, inhibits angiogenesis. Ther Drug Monit 2002;24:104–10.

    Article  PubMed  CAS  Google Scholar 

  12. Dredge K, Marriott JB, Macdonald CD, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer 2002;87:1166–72.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang H, Vakil V, Braunstein M, et al. Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 2005;105:3286–94.

    Article  PubMed  CAS  Google Scholar 

  14. Ng SS, Gutschow M, Weiss M, et al. Antiangiogenic activity of N-substituted and tetrafluorinated thalidomide analogues. Cancer Res 2003;63:3189–94.

    PubMed  CAS  Google Scholar 

  15. Gupta D, Treon SP, Shima Y, et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 2001;15:1950–61.

    PubMed  CAS  Google Scholar 

  16. Bellamy WT, Richter L, Sirjani D, et al. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001;97: 1427–34.

    Article  PubMed  CAS  Google Scholar 

  17. Lentzsch S, LeBlanc R, Podar K, et al. Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo. Leukemia 2003;17:41–4.

    Article  PubMed  CAS  Google Scholar 

  18. Yabu T, Tomimoto H, Taguchi Y, et al. Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate. Blood 2005;106:125–34.

    Article  PubMed  CAS  Google Scholar 

  19. Tamilarasan KP, Kolluru GK, Rajaram M, et al. Thalidomide attenuates nitric oxide mediated angiogenesis by blocking migration of endothelial cells. BMC Cell Biol 2006;7:17.

    Article  PubMed  CAS  Google Scholar 

  20. Dredge K, Horsfall R, Robinson SP, et al. Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvasc Res 2005;69:56–63.

    Article  PubMed  CAS  Google Scholar 

  21. Sampaio EP, Sarno EN, Galilly R, et al. Thalidomide selectively inhibits tumor necrosis factor a production by stimulated human monocytes. J Exp Med 1991;173:699–703.

    Article  PubMed  CAS  Google Scholar 

  22. Meierhofer C, Dunzendorfer S, Wiedermann CJ. Theoretical basis for the activity of thalidomide. BioDrugs 2001;15:681–703.

    Article  PubMed  CAS  Google Scholar 

  23. Shannon EJ, Sandoval F. Thalidomide can be either agonistic or antagonistic to LPS evoked synthesis of TNF-α by mononuclear cells. Immunopharmacol Immunotoxicol 1996;18: 59–72.

    Article  PubMed  CAS  Google Scholar 

  24. Moreira AL, Sampaio EP, Zmuidzinas A, et al. Thalidomide exerts its inhibitory action on tumor necrosis factor α by enhancing mRNA degradation. J Exp Med 1993;177: 1675–80.

    Article  PubMed  CAS  Google Scholar 

  25. Boutten A, Dehoux M, Deschenes M, et al. Alpha 1-acid glycoprotein potentiates lipopolysaccharide-induced secretion of interleukin-1 β, interleukin-6 and tumor necrosis factor-α by human monocytes and alveolar and peritoneal macrophages. Eur J Immunol 1992;22:2687–95.

    Article  PubMed  CAS  Google Scholar 

  26. Turk BE, Jiang H, Liu JO. Binding of thalidomide to α1- acid glycoprotein may be involved in its inhibition of tumor necrosis factor α production. Proc Natl Acad Sci U S A 1996;93:7552–6.

    Article  PubMed  CAS  Google Scholar 

  27. Wnendt S, Finkam M, Winter W, et al. Enantioselective inhibition of TNF-α release by thalidomide and thalidomide-analogues. Chirality 1996;8:390–6.

    Article  PubMed  CAS  Google Scholar 

  28. Sampaio EP, Kaplan G, Miranda A, et al. The influence of thalidomide on the clinical and immunologic manifestation of erythema nodosum leprosum. J Infect Dis 1993;168:408–14.

    PubMed  CAS  Google Scholar 

  29. Haslett PA, Corral LG, Albert M, et al. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med 1998;187:1885–92.

    Article  PubMed  CAS  Google Scholar 

  30. McHugh SM, Rifkin IR, Deighton J, et al. The immunosuppressive drug thalidomide induces T helper cell type 2 (Th2) and concomitantly inhibits Th1 cytokine production in mitogen- and antigen-stimulated human peripheral blood mononuclear cell cultures. Clin Exp Immunol 1995;99:160–7.

    Article  PubMed  CAS  Google Scholar 

  31. Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001;98:210–6.

    Article  PubMed  CAS  Google Scholar 

  32. Keifer JA, Guttridge DC, Ashburner BP, et al. Inhibition of NF-κB activity by thalidomide through suppression of IκB kinase activity. J Biol Chem 2001;276:22382–7.

    Article  PubMed  CAS  Google Scholar 

  33. Hideshima T, Chauhan D, Shima Y, et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000;96:2943–50.

    PubMed  CAS  Google Scholar 

  34. Mitsiades N, Mitsiades CS, Poulaki V, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 2002;99:4525–30.

    Article  PubMed  CAS  Google Scholar 

  35. Gandhi AK, Kang J, Naziruddin S, et al. Lenalidomide inhibits proliferation of Namalwa CSN.70 cells and interferes with Gab1 phosphorylation and adaptor protein complex assembly. Leuk Res 2006;30:849–58.

    Article  PubMed  CAS  Google Scholar 

  36. Du GJ, Lin HH, Xu QT, et al. Thalidomide inhibits growth of tumors through COX-2 degradation independent of antiangiogenesis. Vascul Pharmacol 2005;43:112–9.

    Article  PubMed  CAS  Google Scholar 

  37. Payvandi F, Wu L, Haley M, et al. Immunomodulatory drugs inhibit expression of cyclooxygenase-2 from TNF-α, IL-1β, and LPS-stimulated human PBMC in a partially IL-10-dependent manner. Cell Immunol 2004;230:81–8.

    Article  PubMed  CAS  Google Scholar 

  38. Jin SH, Kim TI, Yang KM, et al. Thalidomide destabilizes cyclooxygenase-2 mRNA by inhibiting p38 mitogen-activated protein kinase and cytoplasmic shuttling of HuR. Eur J Pharmacol 2007;558:14–20.

    Article  PubMed  CAS  Google Scholar 

  39. Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nature Rev Cancer 2004;4:314–322.

    Article  CAS  Google Scholar 

  40. Marriott JB, Muller G, Stirling D, et al. Immunotherapeutic and antitumour potential of thalidomide analogues. Expert Opin Biol Ther 2001;1:675–82.

    Article  PubMed  CAS  Google Scholar 

  41. Marriott JB, Westby M, Cookson S, et al. CC-3052: a water-soluble analog of thalidomide and potent inhibitor of activation-induced TNF-α production. J Immunol 1998;161:4236–43.

    PubMed  CAS  Google Scholar 

  42. Muller GW, Corral LG, Shire MG, et al. Structural modifications of thalidomide produce analogs with enhanced tumor necrosis factor inhibitory activity. J Med Chem 1996;39:3238–40.

    Article  PubMed  CAS  Google Scholar 

  43. Muller GW, Chen R, Huang SY, et al. Amino-substituted thalidomide analogs: potent inhibitors of TNF-α production. Bioorg Med Chem Lett 1999;9:1625–30.

    Article  PubMed  CAS  Google Scholar 

  44. Ruegg C, Yilmaz A, Bieler G, et al. Evidence for the involvement of endothelial cell integrin αVβ3 in the disruption of the tumor vasculature induced by TNF and IFN-γ. Nat Med 1998;4:408–14.

    Article  PubMed  CAS  Google Scholar 

  45. Rajkumar SV, Blood E, Vesole D, et al. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol 2006;24:431–6.

    Article  PubMed  CAS  Google Scholar 

  46. Richardson PG, Mitsiades C, Hideshima T, et al. Lenalidomide in multiple myeloma. Expert Rev Anticancer Ther 2006;6:1165–73.

    Article  PubMed  CAS  Google Scholar 

  47. Chanan-Khan AA, Weber D, Dimopoulos M, et al. Lenalidomide in combination with dexamethasone improves survival and time to progression in elderly patients with relapsed or refractory multiple myeloma. Blood 2006;108:Abstract 3551.

    Google Scholar 

  48. List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5 q deletion. N Engl J Med 2006;355:1456–65.

    Article  PubMed  CAS  Google Scholar 

  49. Bennett CL, Angelotta C, Yarnold PR, et al. Thalidomide- and lenalidomide-associated thromboembolism among patients with cancer. Jama 2006;296:2558–60.

    Article  PubMed  CAS  Google Scholar 

  50. Kulke MH, Stuart K, Enzinger PC, et al. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J Clin Oncol 2006;24:401–6.

    Article  PubMed  CAS  Google Scholar 

  51. Kumar S, Witzig TE, Rajkumar SV. Thalidomid: current role in the treatment of non-plasma cell malignancies. J Clin Oncol 2004;22:2477–88.

    Article  PubMed  CAS  Google Scholar 

  52. Dahut WL, Gulley JL, Arlen PM, et al. Randomized phase II trial of docetaxel plus thalidomide in androgen-independent prostate cancer. J Clin Oncol 2004;22:2532–9.

    Article  PubMed  CAS  Google Scholar 

  53. Mathew P, Logothetis CJ, Dieringer PY, et al. Thalidomide/estramustine/paclitaxel in metastatic androgen-independent prostate cancer. Clin Genitourin Cancer 2006;5:144–9.

    Article  PubMed  CAS  Google Scholar 

  54. Figg WD, Li H, Sissung T, et al. Pre-clinical and clinical evaluation of estramustine, docetaxel and thalidomide combination in androgen-independent prostate cancer. BJU Int 2007;99:1047–55.

    Article  PubMed  CAS  Google Scholar 

  55. Figg WD, Retter A, Steinberg SM, et al. In reply, Inhibition of Angiogenesis: Thalidomide or low-molecular-weight heparin? J Clin Oncol 2005;23:2113–4.

    Article  Google Scholar 

  56. Figg WD. The 2005 Leon I. Goldberg Young Investigator Award Lecture: Development of thalidomide as an angiogenesis inhibitor for the treatment of androgen-independent prostate cancer. Clin Pharmacol Ther 2006;79:1–8.

    Article  PubMed  Google Scholar 

  57. Ning YM, Arlen P, Gulley JL, et al. A phase II trial of thalidomide, bevacizumab, and docetaxel in patients with metastatic androgen-independent prostate cancer. J Clin Oncol 2007;25:Abstract 5114.

    Google Scholar 

  58. Efstathiou E, Troncoso P, Wen S, et al. Initial modulation of the tumor microenvironment accounts for thalidomide activity in prostate cancer. Clin Cancer Res 2007;13:1224–31.

    Article  PubMed  CAS  Google Scholar 

  59. Clark PE, Hall MC, Miller A, et al. Phase II trial of combination interferon-α and thalidomide as first-line therapy in metastatic renal cell carcinoma. Urology 2004;63:1061–5.

    Article  PubMed  Google Scholar 

  60. Vaishampayan UN, Heilbrun LK, Shields AF, et al. Phase II trial of interferon and thalidomide in metastatic renal cell carcinoma. Invest New Drugs 2007;25:69–75.

    Article  PubMed  CAS  Google Scholar 

  61. Lee CP, Patel PM, Selby PJ, et al. Randomized phase II study comparing thalidomide with medroxyprogesterone acetate in patients with metastatic renal cell carcinoma. J Clin Oncol 2006;24:898–903.

    Article  PubMed  CAS  Google Scholar 

  62. Amato RJ, Morgan M, Rawat A. Phase I/II study of thalidomide in combination with interleukin-2 in patients with metastatic renal cell carcinoma. Cancer 2006;106:1498–506.

    Article  PubMed  CAS  Google Scholar 

  63. Choueiri TK, Dreicer R, Rini BI, et al. Phase II study of lenalidomide in patients with metastatic renal cell carcinoma. Cancer 2006;107:2609–16.

    Article  PubMed  CAS  Google Scholar 

  64. Chanan-Khan A, Miller KC, Musial L, et al. Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study. J Clin Oncol 2006;24:5343–9.

    Article  PubMed  CAS  Google Scholar 

  65. Wiernik PH, Lossos IS, Tuscano J, et al. Preliminary results from a phase II study of lenalidomide oral monotherapy in relapsed/refractory aggressive non-Hodgkin lymphoma. J Clin Oncol 2007;25:Abstract 8052.

    Google Scholar 

  66. Wang M, Delasalle K, S. G, et al. Rapid control of previously untreated multiple myeloma with bortezomib-thalidomide-dexamethasone followed by early intensive therapy. Blood 2005;106:231a (abstract 784).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chau, C.H., Dahut, W., Figg, W.D. (2008). Development of Thalidomide and Its IMiD Derivatives. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics