Skip to main content

Plant Cytogenetics in Genome Databases

  • Chapter
  • First Online:
Plant Cytogenetics

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 4))

  • 2322 Accesses

Abstract

Cytogenetic maps provide an integrated representation of genetic and cytological information that can be used to enhance genome and chromosome research. As genome analysis technologies become more affordable, the density of markers on cytogenetic maps increases, making these resources more useful as an information-rich visual context for research. As the accessibility of online bioinformatics and database resources grows, the primary points of access to cytogenetic data and tools will be through online resources. Here we define cytogenetic maps and distinguish them from other common map types, report and discuss the cytogenetic maps and tools currently available for plants, and describe how to access these cytogenetic resources online.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

μm:

Micrometers

BACs:

Bacterial artificial chromosomes

cM:

centiMorgan

cMC:

centiMcClintock

ENs:

Early nodules

FISH:

Fluorescence in situ hybridization

FPC:

Fingerprint contig

MaizeGDB:

Maize Genetics and Genomics Database

RNs:

Late recombination nodules

TB:

Translocations with the B chromosome

References

  • Anantharaman TS, Mishra B, and Schwartz DC (1997) Genomics via optical mapping. II: Ordered restriction maps. J Comput Biol 4:91–118

    Article  CAS  PubMed  Google Scholar 

  • Anderson LK, Stack SM (2005) Recombination nodules in plants. Cytogenet Genome Res 109:198–204

    Article  CAS  PubMed  Google Scholar 

  • Anderson LK, Reeves A, Webb LM, Ashley T (1999) Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics 151:1569–1579

    CAS  PubMed  Google Scholar 

  • Anderson LK, Hooker KD, Stack SM (2001) The distribution of early recombination nodules on zygotene bivalents from plants. Genetics 159:1259–1269

    CAS  PubMed  Google Scholar 

  • Anderson LK, Doyle GG, Brigham B, Carter J, Hooker KD, Lai A, Rice M, Stack SM. (2003) High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165:849–865

    CAS  PubMed  Google Scholar 

  • Anderson LK, Salameh N, Bass HW, Harper LC, Cande WZ, Weber G, Stack SM (2004) Integrating genetic linkage maps with pachytene chromosome structure in maize. Genetics 166:1923–1933

    Article  CAS  PubMed  Google Scholar 

  • Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A, Ashley T, Liskay RM (1996) Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13:336–342

    Article  CAS  PubMed  Google Scholar 

  • Cabrera A, Martin A, Barro F (2002) In-situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum. Chromosome Res 10:49–54

    Article  CAS  PubMed  Google Scholar 

  • Calderon PL, Pigozzi MI (2006) MLH1-focus mapping in birds shows equal recombination between sexes and diversity of crossover patterns. Chromosome Res 14605–612

    Google Scholar 

  • Chang SB, Anderson LK, Sherman JD, Royer SM, Stack SM (2007) Predicting and testing physical locations of genetically mapped loci on tomato pachytene chromosome 1. Genetics 176:2131–2138

    Article  CAS  PubMed  Google Scholar 

  • Coe E, (1985) Maize Genet Coop Newslett 59:168–187

    Google Scholar 

  • Davis GL, McMullen MD, Baysdorfer C, Musket T, Grant D, Staebell M, Xu G, Polacco M, Koster L, Melia-Hancock S, Houchins K, Chao S, Coe EH Jr (1999) A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152:1137–1172

    CAS  PubMed  Google Scholar 

  • Falque M, Mercier R, Mezard C, de Vienne D, Martin OC (2007) Patterns of recombination and MLH1 foci density along mouse chromosomes: modeling effects of interference and obligate chiasma. Genetics 176:1453–1467

    Article  CAS  PubMed  Google Scholar 

  • Franklin AE, McElver J, Sunjevaric I, Rothstein R, Bowen B, Cande WZ (1999) Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase. Plant Cell 11:809–824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Froenicke L, Anderson LK, Wienberg J, Ashley T (2002) Male mouse recombination maps for each autosome identified by chromosome painting. Am J Hum Genet 71:1353–1368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harper LC, Cande WZ (2000) Mapping a new frontier; development of integrated cytogenetic maps in plants. Funct Integr Genomics 1:89–98

    Article  CAS  PubMed  Google Scholar 

  • Hoisington D, Coe E (1987) Maize Genet Coop Newslett 61:128–147

    Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Koumbaris GL, Bass HW (2003) A new single-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limits with marker-selected sorghum (S. propinquum L.) BAC clones. Plant J 35:647–659

    Article  CAS  PubMed  Google Scholar 

  • Lawrence CJ, Seigfried TE, Bass HW, Anderson LK (2006) Predicting chromosomal locations of genetically mapped loci in maize using the Morgan2McClintock Translator. Genetics 172:2007–2009

    Article  CAS  PubMed  Google Scholar 

  • Lawrence CJ, Schaeffer ML, Seigfried TE, Campbell DA, Harper LC (2007) MaizeGDB’s new data types, resources and activities. Nucleic Acids Res 35:D895–D900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyrakou S, Mantas D, Msaouel P, Baathalah S, Shrivastav P, Chrisostomou M, Mihalopoulos Y, Hasiakos D, Baka S (2007) Crossover analysis using immunofluorescent detection of MLH1 foci in frozen-thawed testicular tissue. Reprod Biomed Online 15:99–105

    Article  CAS  PubMed  Google Scholar 

  • Marcon E, Moens P (2003) MLH1p and MLH3p localize to precociously induced chiasmata of okadaic-acid-treated mouse spermatocytes. Genetics 165:2283–2287

    CAS  PubMed  Google Scholar 

  • Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B (2002) The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J Cell Sci 115:1611–1622

    CAS  PubMed  Google Scholar 

  • Moens PB, Marcon E, Shore JS, Kochakpour NK, Spyropoulos B (2007) Initiation and resolution of interhomolog connections: crossover and non-crossover sites along mouse synaptonemal complexes. J Cell Sci 120:1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Pampanwar V, Engler F, Hatfield J, Blundy S, Gupta G, Soderlund C (2005) FPC web tools for rice, maize, and distribution. Plant Physiol 138:116–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pawlowski WP, Golubovskaya IN, Cande WZ (2003) Altered nuclear distribution of recombination protein RAD51 in maize mutants suggests the involvement of RAD51 in meiotic homology recognition. Plant Cell 15:1807–1816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherman JD, Stack SM (1995) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141:683–708

    CAS  PubMed  Google Scholar 

  • Sun F, Oliver-Bonet M, Liehr T, Starke H, Turek P, Ko E, Rademaker A, Martin RH (2006) Variation in MLH1 distribution in recombination maps for individual chromosomes from human males. Hum Mol Genet 15:2376–2391

    Article  CAS  PubMed  Google Scholar 

  • Wang CJ, Chen CC (2005) Cytogenetic mapping in maize. Cytogenet Genome Res 109:63–69

    Article  PubMed  Google Scholar 

  • Wang CJ, Harper L, Cande WZ (2006) High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18:529–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa C. Harper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Harper, L.C., Sen, T.Z., Lawrence, C.J. (2012). Plant Cytogenetics in Genome Databases. In: Bass, H., Birchler, J. (eds) Plant Cytogenetics. Plant Genetics and Genomics: Crops and Models, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70869-0_14

Download citation

Publish with us

Policies and ethics