Skip to main content

Estrogen-Induced Breast Oncogenesis: Modulation by an Aurora Kinase Inhibitor

  • Chapter
Hormonal Carcinogenesis V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 617))

  • 2386 Accesses

Breast cancer (BC) alone accounts for about 32% of all cancers occurring in women in industrialized countries, and thus, is clearly an immense world wide public health concern. More than 90% of all human BC cases are sporadic or nonfamilial with an equally high percentage of these cases being ductal breast carcinomas, the rest are lobular. This latter distinction is particularly important since ductal BCs are highly aneuploid, while lobular BCs are mainly diploid. While the presence of estrogen receptor (ERα) is nearly a ubiquitous feature of sporadic BCs; about 55–73%, aneuploidy, not the presence of ERα+, is its most defining characteristic (65–90%) (1–3). Moreover, the detection of high aneuploid frequencies in a preinvasive stage, ductal carcinoma in situ (DCIS), strongly implicates that this molecular alteration has a primary role in the ontogeny and progression of early sporadic ductal BCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnerlov C, Emdin SO, Cajander S, et al. (2001) Intratumoral variations in DNA ploidy and s-phase fraction in human breast cancer. Anal Cell Pathol, 23, 21–8.

    PubMed  CAS  Google Scholar 

  2. Makris A, Allred DC, Powles TJ, et al. (1997) Cytological evaluation of biological prognostic markers from primary breast carcinomas. Breast Cancer Res Treat, 44, 65–74.

    Article  PubMed  CAS  Google Scholar 

  3. Leal CB, Schmitt FC, Bento MJ, et al. (1995) Ductal carcinoma in situ of the breast. Histologic categorization and its relationship to ploidy and immunohistochemical expression of hormone receptors, p53, and c-erbB-2 protein. Cancer, 75, 2123–31.

    Article  PubMed  CAS  Google Scholar 

  4. Feigelson HS, Henderson BE (1996) Estrogens and breast cancer. Carcinogenesis, 17, 2279–84.

    Article  PubMed  CAS  Google Scholar 

  5. Adami HO, Persson I, Ekbom A, et al. (1995) The aetiology and pathogenesis of human breast cancer. Mutat Res, 333, 29–35.

    PubMed  CAS  Google Scholar 

  6. Li JJ, Weroha, SJ, Lingle WL, et al. (2004) Estrogen mediates Aurora-A overexpression, centrosome amplification, chromosomal instability, and breast cancer in female ACI rats. Proc Natl Acad Sci USA, 101, 18123–8.

    Article  PubMed  CAS  Google Scholar 

  7. Li SA, Weroha SJ, Tawfik O et al. (2002) Prevention of solely estrogen-induced mammary tumors in female aci rats by tamoxifen: evidence for estrogen receptor mediation. J Endocrinol, 175, 297–305.

    Article  PubMed  CAS  Google Scholar 

  8. Li JJ, Li SA (2007) Deciphering the conundrum of estrogen-driven breast cancer: aurora kinase deregulation. Springer Verlag, New York.

    Google Scholar 

  9. Weroha SJ, Li SA, Tawfik O, et al. (2006) Overexpression of cyclins D1 and D3 during estrogen-induced breast oncogenesis in female ACI rats. Carcinogenesis, 27, 491–8.

    Article  PubMed  CAS  Google Scholar 

  10. Butcher RL, Collins WE, Fugo NW (1974) Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17beta throughout the 4-day estrous cycle of the rat. Endocrinology, 94, 1704–8.

    Article  PubMed  CAS  Google Scholar 

  11. Eliassen AH, Missmer SA, Tworoger SS et al. (2006) Endogenous steroid hormone concentrations and risk of breast cancer: does the association vary by a woman’s predicted breast cancer risk? J Clin Oncol, 24, 1823–30.

    Article  PubMed  CAS  Google Scholar 

  12. Chetrite GS, Cortes-Prieto J, Philippe JC, et al. (2000) Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues. J Steroid Biochem Mol Biol, 72, 23–7.

    Article  PubMed  CAS  Google Scholar 

  13. Vermeulen A, Deslypere JP, Paridaens R, et al. (1986) Aromatase, 17 beta-hydroxysteroid dehydrogenase and intratissular sex hormone concentrations in cancerous and normal glandular breast tissue in postmenopausal women. Eur J Cancer Clin Oncol, 22, 515–25.

    Article  PubMed  CAS  Google Scholar 

  14. Hontz AE, Li SA, Lingle WL, et al. (2007) Aurora a and B overexpression and centrosome amplification in early estrogen-induced tumor foci in the Syrian hamster kidney: implications for chromosomal instability, aneuploidy, and neoplasia. Cancer Res, 67, 2957–63.

    Article  PubMed  CAS  Google Scholar 

  15. Dubik D, Dembinski TC, Shiu RP (1987) Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells. Cancer Res, 47, 6517–21.

    PubMed  CAS  Google Scholar 

  16. Sutherland RL, Musgrove EA (2004) Cyclins and breast cancer. J Mammary Gland Biol Neoplasia, 9, 95–104.

    Article  PubMed  Google Scholar 

  17. Tanaka T, Kimura M, Matsunaga K, et al. (1999) Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res, 59, 2041–4.

    PubMed  CAS  Google Scholar 

  18. Lingle WL, Lutz WH, Ingle JN, et al. (1998) Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci USA, 95, 2950–5.

    Article  PubMed  CAS  Google Scholar 

  19. Zhou H, Kuang J, Zhong L, et al. (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet, 20, 189–93.

    Article  PubMed  CAS  Google Scholar 

  20. Marumoto T, Zhang D, Saya H (2005) Aurora-A – a guardian of poles. Nat Rev Cancer, 5, 42–50.

    Article  PubMed  CAS  Google Scholar 

  21. Meraldi P, Honda R, Nigg EA (2002) Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. Embo J, 21, 483–92.

    Article  PubMed  CAS  Google Scholar 

  22. Brinkley BR, Goepfert TM (1998) Supernumerary centrosomes and cancer: Boveri’s hypothesis resurrected. Cell Motil Cytoskeleton, 41, 281–8.

    Article  PubMed  CAS  Google Scholar 

  23. Li JJ, Li SA (2006) Mitotic kinases: the key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol Ther, 111, 974–84.

    Article  PubMed  CAS  Google Scholar 

  24. Salisbury JL (2001) The contribution of epigenetic changes to abnormal centrosomes and genomic instability in breast cancer. J Mammary Gland Biol Neoplasia, 6, 203–12.

    Article  PubMed  CAS  Google Scholar 

  25. Brinkley BR (2001) Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol, 11, 18–21.

    Article  PubMed  CAS  Google Scholar 

  26. Lingle WL, Barrett SL, Negron VC, et al. (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA, 99, 1978–83.

    Article  PubMed  CAS  Google Scholar 

  27. Bovari T (1914) The origin of malignant tumours. Williams and Wikins, Baltimore.

    Google Scholar 

  28. Harrington EA, Bebbington D, Moore J, et al. (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med, 10, 262–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Li, S.A., Lam, L.K.T., Ahmed, N., Hontz, A.E., Li, J.J. (2008). Estrogen-Induced Breast Oncogenesis: Modulation by an Aurora Kinase Inhibitor. In: Li, J.J., Li, S.A., Mohla, S., Rochefort, H., Maudelonde, T. (eds) Hormonal Carcinogenesis V. Advances in Experimental Medicine and Biology, vol 617. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69080-3_20

Download citation

Publish with us

Policies and ethics