Skip to main content

Motion Kinematics

  • Chapter
Theory of Applied Robotics

Abstract

Consider a rigid body with an attached local coordinate frame B(oxyz) moving freely in a fixed global coordinate frame G(OXYZ). The rigid body can rotate in the global frame, while point o of the body frame B can translate relative to the origin O of G as shown in Figure 4.1.

Rotation and translation of a local frame with respect to a global frame.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball, R. S., 1900, A Treatise on the Theory of Screws, Cambridge University Press, USA.

    Google Scholar 

  • Bottema, O., and Roth, B., 1979, Theoretical Kinematics, North-Holland Publication, Amsterdam, The Netherlands.

    MATH  Google Scholar 

  • Chernousko, F. L., Bolotnik, N. N., and Gradetsky, V. G,, 1994, Manipulation Robots: Dynamics, Control, and Optimization, CRC press, Boca Raton, Florida.

    Google Scholar 

  • Davidson, J. K., and Hunt, K. H., 2004, Robots and Screw Theory: Applications of Kinematics and Statics to Robotics, Oxford University Press, New York.

    MATH  Google Scholar 

  • Denavit, J., and Hartenberg, R. S., 1955, A kinematic notation for lowerpair mechanisms based on matrices, Journal of Applied Mechanics, 22(2), 215–221.

    MATH  MathSciNet  Google Scholar 

  • Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Oxford University Press, London.

    MATH  Google Scholar 

  • Mason, M. T., 2001, Mechanics of Robotic Manipulation, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Murray, R. M., Li, Z., and Sastry, S. S. S., 1994, A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, Florida.

    MATH  Google Scholar 

  • Niku, S. B., 2001, Introduction to Robotics: Analysis, Systems, Applications, Prentice Hall, New Jersey.

    Google Scholar 

  • Pltücker, J., 1866, Fundamental views regarding mechanics, Philosophical Transactions, 156, 361–380.

    Article  Google Scholar 

  • Selig, J. M., 2005, Geometric Fundamentals of Robotics, 2nd ed., Springer, New York.

    MATH  Google Scholar 

  • Schaub, H., and Junkins, J. L., 2003, Analytical Mechanics of Space Systems, AIAA Educational Series, American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia.

    Google Scholar 

  • Schilling, R. J., 1990, Fundamentals of Robotics: Analysis and Control, Prentice Hall, New Jersey.

    Google Scholar 

  • Suh. C. H., and Radcliff, C. W., 1978, Kinematics and Mechanisms Design, John Wiley & Sons, New York.

    Google Scholar 

  • Spong, M. W., Hutchinson, S., and Vidyasagar, M., 2006, Robot Modeling and Control, John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jazar, R.N. (2007). Motion Kinematics. In: Theory of Applied Robotics. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68964-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68964-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32475-3

  • Online ISBN: 978-0-387-68964-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics