Skip to main content

CMOS/Microfluidic Hybrid Systems

  • Chapter
CMOS Biotechnology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Kilby, “Invention of the integrated circuit,” IEEE Transactions on Electron Devices, vol. ED-23, pp. 648-654, 1976.

    Article  Google Scholar 

  2. G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, pp. 114-117, 1965.

    Google Scholar 

  3. A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” vol. 1, pp. 244-248, 1990.

    Google Scholar 

  4. G. M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, pp. 368-373, 2006.

    Article  Google Scholar 

  5. J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature, vol. 442, pp. 403-411, 2006.

    Article  Google Scholar 

  6. D. J. Harrison, K. Fluri, K. Seiler, F. Zhonghui, C. S. Effenhauser, and A. Manz, “Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip,” Science, vol. 261, pp. 895-897, 1993.

    Article  Google Scholar 

  7. T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integra- tion,” Science, vol. 298, pp. 580-584, 2002.

    Article  Google Scholar 

  8. H. Lee, Y. Liu, E. Alsberg, D. E. Ingber, R. M. Westervelt, and D. Ham, “An IC/microfluidic hybrid microsystem for 2D magnetic manipulation of individual biological cells,” 2005 IEEE International Solid-State Circuits Conference Dig. Tech. Papers, vol. 1, pp. 80-81, 2005.

    Google Scholar 

  9. H. Lee, Y. Liu, R. M. Westervelt, and D. Ham, “IC/microfluidic hybrid sys- tem for magnetic manipulation of biological cells,” IEEE Journal of SolidState Circuits, vol. 41, pp. 1471-1480, 2006.

    Article  Google Scholar 

  10. M. Schienle, C. Paulus, A. Frey, F. Hofmann, B. Holzapβ, P. Schindler-Bauer, and R. Thewes, “A fully electronic DNA sensor with 128 positions and inpixel A/D conversion,” IEEE Journal of Solid-State Circuits, vol.39, pp. 2438-2445, 2004.

    Article  Google Scholar 

  11. R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, “Microfluidic manipu- lation via Marangoni forces,” Applied Physics Letters, vol. 85, pp. 4237-4239, 2004.

    Article  Google Scholar 

  12. T. K. Jun and K. Chang-Jin, “Valveless pumping using traversing vapor bub- bles in microchannels,” Journal of Applied Physics, vol. 83, pp. 5658-5664, 1998.

    Article  Google Scholar 

  13. D. L. Huber, R. P. Manginell, M. A. Samara, B. I. Kim, and B. C. Bunker, “Programmed adsorption and release of proteins in a microfluidic device,” Science, vol. 301, pp. 352-354, 2003.

    Article  Google Scholar 

  14. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature, vol. 442, pp. 381-386, 2006.

    Article  Google Scholar 

  15. A. J. DeMello, “Control and detection of chemical reactions in microfluidic systems,” Nature, vol. 442, pp. 394-402, 2006.

    Article  Google Scholar 

  16. H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small de- vices: microfluidics toward a lab-on-a-chip,” Annual review of fluid mechanics, vol. 36, pp. 381-411, 2004.

    Article  Google Scholar 

  17. T. H. Lee, The design of CMOS radio-frequency integrated circuits. Cambridge, [England] New York: Cambridge University Press, 1998.

    Google Scholar 

  18. N.-T. Nguyen and S. T. Wereley, Fundamentals and applications of microflu- idics. Boston, MA: Artech House, 2002.

    Google Scholar 

  19. H. Becker and C. Gartner, “Polymer microfabrication methods for microflu- idic analytical applications,” Electrophoresis, vol. 21, pp. 12-26, 2000.

    Article  Google Scholar 

  20. F. E. H . Tay, J. A. van Kan, F. Watt, and W. O. Choong, “A novel micro- machining method for the fabrication of thick-film SU-8 embedded microchannels,” Journal of Micromechanics and Microengineering, vol. 11, pp. 27-32, 2001.

    Article  Google Scholar 

  21. B. E. J. Alderman, C. M. Mann, D. P. Steenson, and J. M. Chamberlain, “Microfabrication of channels using an embedded mask in negative resist,” Journal of Micromechanics and Microengineering, vol. 11, pp. 703-705, 2001.

    Article  Google Scholar 

  22. K. Lee, J. He, R. Clement, S. Massia, and B. Kim, “Biocompatible ben- zocyclobutene (BCB)-based neural implants with micro-fluidic channel,” Biosensors & Bioelectronics, vol. 20, pp. 404-407, 2004.

    Article  Google Scholar 

  23. S. Metz, R. Holzer, and P. Renaud, “Polyimide-based microfluidic devices,” Lab Chip, vol. 1, pp. 29-34, Sep 2001.

    Article  Google Scholar 

  24. M. Agirregabiria, F. J. Blanco, J. Berganzo, M. T. Arroyo, A. Fullaondo, K. Mayora, and J. M. Ruano-Lopez, “Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps,” Lab on a Chip, vol. 5, pp. 545-552, 2005.

    Article  Google Scholar 

  25. H. Lee, Y. Liu, D. Ham, and R. M. Westervelt, “Integrated Cell Manipulation System- CMOS/Microfluidic Hybrid,” Lab on a Chip, DOI:10.1039/ B700373K.

    Google Scholar 

  26. Y. N. Xia and G. M. Whitesides, “Soft lithography,” Annual Review of Materials Science, vol. 28, pp. 153-184, 1998.

    Article  Google Scholar 

  27. W. J. Chang, D. Akin, M. Sedlak, M. R. Ladisch, and R. Bashir, “Poly(dimethylsiloxane) (PDMS) and silicon hybrid biochip for bacterial culture,” Biomedical Microdevices, vol. 5, pp. 281-290, 2003.

    Article  Google Scholar 

  28. P. Vulto, N. Glade, L. Altomare, J. Bablet, L. Del Tin, G. Medoro, I. Chartier, A. N. Manaresi, M. Tartagni, and R. Guerrieri, “Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips,” Lab on a Chip, vol. 5, pp. 158-162, 2005.

    Article  Google Scholar 

  29. M. O. Heuschkel, L. Guerin, B. Buisson, D. Bertrand, and P. Renaud, “Buried microchannels in photopolymer for delivering of solutions to neurons in a network,” Sensors and Actuators B, vol. B48, pp. 356-361, 1998.

    Article  Google Scholar 

  30. H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sensors and Actuators A: Physical, vol. 83, pp. 130-135, 2000.

    Article  Google Scholar 

  31. M. Heckele and W. K. Schomburg, “Review on micro molding of thermo- plastic polymers,” Journal of Micromechanics and Microengineering, vol. 14, pp. R1-14, 2004.

    Article  Google Scholar 

  32. M. Worgull, J. F. Hetu, K. K. Kabanemi, and M. Heckele, “Modeling and optimization of the hot embossing process for micro- and nanocomponent fabrication,” Microsystem Technologies, vol. 12, pp. 947-952, 2006.

    Article  Google Scholar 

  33. L. J. Kricka, P. Fortina, N. J. Panaro, P. Wilding, G. Alonso-Amigo, and H. Becker, “Fabrication of plastic microchips by hot embossing,” Lab on a Chip, vol. 2, pp. 1-4, 2002.

    Article  Google Scholar 

  34. W. Ehrfeld, V. Hessel, H. Lowe, C. Schulz, and L. Weber, “Materials of LIGA technology,” Microsystem Technologies, vol. 5, pp. 105-112, 1999.

    Article  Google Scholar 

  35. N. Maluf and K. Williams, Introduction to microelectromechanical systems engineering, 2nd ed. Boston: Artech House, 2004.

    Google Scholar 

  36. C. K. Fredrickson and Z. H. Fan, “Macro-to-micro interfaces for microfluidic devices,” Lab Chip, vol. 4, pp. 526-33, Dec 2004.

    Article  Google Scholar 

  37. B. L. Gray, D. Jaeggi, N. J. Mourlas, B. P. van Drieenhuizen, K. R. Williams, N. I. Maluf, and G. T. A. Kovacs, “Novel interconnection technologies for in- tegrated microfluidic systems,” Sensors and Actuators A (Physical), vol. 77, pp. 57-65, 1999.

    Article  Google Scholar 

  38. T. P. Hunt, H. Lee, R. M. Westervelt, “Addressable micropost array for the dielectrophoretic manipulation of particles in fluid,” Applied Physics Letters, vol. 85, pp. 6421-6423, 2004.

    Article  Google Scholar 

  39. J. H. Lau and S.-W. R. Lee, Chip scale package (CSP) : design, materials, processes, and applications. New York: McGraw-Hill, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, H., Ham, D., Westervelt, R.M. (2007). CMOS/Microfluidic Hybrid Systems. In: Lee, H., Westervelt, R.M., Ham, D. (eds) CMOS Biotechnology. Series on Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68913-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68913-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36836-8

  • Online ISBN: 978-0-387-68913-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics