Skip to main content

Introduction to Integrated Predictive Modeling

  • Chapter
Predictive Modeling and RiskAssessment

When a mathematical model is properly developed, it is a potential tool for process design, assessment, and optimization. Using a mathematical expression that predicts a real observation with accuracy and precision is an efficient way to develop new products and to control systems. However, to attain a convenient model, a lot of well-guided experimental effort should be expended and the model should be validated. One should never forget that the model predicts one response in the range of experimental conditions tested and care should be taken when extrapolating to other operating conditions.

This chapter provides an introductory approach to concepts and methods involved in mathematical modeling, with particular focus on modeling quality and safety of food products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ávila, I.M.L.B. and Silva, C.L.M. (1999) “Modelling kinetics of thermal degradation of colour in peach puree”, Journal of Food Engineering, 39(2), 161–166.

    Article  Google Scholar 

  • Azevedo, I.C.A., Oliveira, F.A.R. and Drumond, M.C. (1998) “A study on the accuracy and precision of external mass transfer and diffusion coefficients jointly estimated from pseudo- experimental simulated data” , Mathematics and Computers in Simulation, 48(1), 11–22.

    Article  Google Scholar 

  • Baranyi, J. and Roberts, T.A. (1994) “A dynamic approach to predicting bacterial-growth in food”, International Journal of Food Microbiology, 23(3–4), 277–294.

    Article  CAS  Google Scholar 

  • Baranyi, J., McClure, P.J., Sutherland, J.P. and Roberts, T.A. (1993) “Modelling bacterial-growth responses”, Journal of Industrial Microbiology, 12(3–5), 190–194.

    Article  Google Scholar 

  • Bard, Y. (1974) “Nonlinear Parameter Estimation”. Academic Press, New York, USA.

    Google Scholar 

  • Bates, D.M. and Watts, D.G. (1988) “Nonlinear Regression Analysis and its Applications”. Wiley, New York, USA.

    Google Scholar 

  • Bernaerts, K., Dens, E., Vereecken, K., Geeraerd, A.H., Standaert, A.R., Devlieghere, F., Debevere, J. and Van Impe, J.F. (2004) “Concepts and tools for predictive modelling of micro- bial dynamics”, Journal of Food Protection, 67(9), 2041–2052.

    Google Scholar 

  • Bhaduri, S., Smith, P.W., Palumbo, S.A., Turmer-Jones, C.O., Smith, J.L., Marmer, B.S., Buchanan, R.L., Zaika, L.L. and Williams, A.C. (1991) “Thermal destruction of L. monocy- togenes in liver sausage slurry” , Food Microbiology, 8, 75–78.

    Article  Google Scholar 

  • Bigelow, W.D. (1921) “The logarithmic nature of thermal death time curves”, Journal of Infectious Diseases, 29, 528–536.

    Google Scholar 

  • Boulanger, M. and Escobar, L.A. (1994) “Experimental design for a class of accelerated degradation tests”, Technometrics, 36(3), 260–272.

    Article  Google Scholar 

  • Box, G.E.P. and Draper, N.R. (1965) “The Baysean estimation of common parameters from several responses”, Biometrika, 52(3,4), 355–365.

    Google Scholar 

  • Box, G.E.P. and Lucas, H.L. (1959) “Design of experiments in non-linear situations”, Biometrika 46(1,2), 77–90.

    Google Scholar 

  • Box, G.E.P., Hunter, W.G. and Hunter, J.S. (1978) “Statistics for Experiments. An Introduction to Design, Data Analysis and Model Building”. Wiley, New York, USA.

    Google Scholar 

  • Brandão, T.R.S. (2004) “Application of non-isothermal methods to the estimation of mass transfer parameters: analysis of the effect of experimental design and data analysis on the precision and accuracy of the estimates”, Ph.D. thesis , Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal.

    Google Scholar 

  • Brandão, T.R.S. and Oliveira, F.A.R. (2001) “Design of experiments for improving the precision in the estimation of diffusion parameters under isothermal and non-isothermal conditions” , International Journal of Food Science and Technology, 36(3), 291–301.

    Article  Google Scholar 

  • Chatterjee, S. and Price, B. (1991) “Regression Analysis by Example”. 2nd ed. Wiley, New York, USA.

    Google Scholar 

  • Cruz, R.M.S., Vieira, M.C. and Silva, C.L.M. (2006) “Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress ( Nasturtium officinale)”, Journal of Food Engineering, 72(1), 8–15.

    Article  CAS  Google Scholar 

  • Cunha, L.M. and Oliveira, F.A.R. (2000) “Optimal experimental design for estimating the kinetic parameters of processes described by the first-order Arrhenius model under linearly increasing temperature profiles”, Journal of Food Engineering, 46(1), 53–60.

    Article  Google Scholar 

  • Cunha, L.M., Oliveira, F.A.R., Brandão, T.R.S. and Oliveira, J.C. (1997) “Optimal experimental design for estimating the kinetic parameters of the Bigelow model” , Journal of Food Engineering, 33(1,2), 111–128.

    Article  Google Scholar 

  • Cunha, L.M., Oliveira, F.A.R., Aboim, A.P., Frías, J.M. and Pinheiro-Torres, A. (2001) “Stochastic approach to the modelling of water losses during osmotic dehydration and improved parameter estimation”, International Journal of Food Science and Technology, 36(3), 253–262.

    Article  CAS  Google Scholar 

  • Draper, N. and Smith, H. (1981) “Applied Regression Analysis”. 2nd ed. Wiley, New York, USA.

    Google Scholar 

  • Esty, J.R. and Meyer, K.F. (1922) “The heat resistance of the spore of Bacillus botulinus and allied anaerobes. XI”, Journal of Infectious Diseases, 31, 650–663.

    Google Scholar 

  • Frías, J.M., Oliveira, J.C., Cunha, L.M. and Oliveira, F.A.R. (1998) “Application of D-optimal design for determination of the influence of water content on the thermal degradation kinetics of ascorbic acid in dry environments” , Journal of Food Engineering, 38(1), 69–85.

    Article  Google Scholar 

  • Gaillard, S., Leguérinel, I. and Mafart, P. (1998) “Model for combined effects of temperature, pH and water activity on thermal inactivation of Bacillus cereus spores”, Journal of Food Science 63, 887–889.

    Article  CAS  Google Scholar 

  • Geeraerd, A.H., Herremans, C.H. and Van Impe, J.F. (2000) “Structural model requirements to describe microbial inactivation during a mild heat treatment” , International Journal of Food Microbiology, 59, 185–209.

    Article  CAS  Google Scholar 

  • Gibson, A.M., Bratchell, N. and Roberts, T.A. (1987) “The effect of sodium-chloride and temperature on the rate and extent of growth of Clostridium-botulinun type-A in pasteurized pork slurry”, Journal of Applied Bacteriology, 62(6), 479–490.

    CAS  Google Scholar 

  • Gil, M.M., Pereira, P.M., Brandão, T.R.S., Silva, C.L.M., Kondjoyan, A., Van Impe, J.F.M. and James, S. (2006). “Integrated approach on heat transfer and inactivation kinetics of microorganisms on the surface of foods during heat treatments — software development” , Journal of Food Engineering, 76, 95–103.

    Article  Google Scholar 

  • Johnson, M.L. and Frasier, S.G. (1985) “Nonlinear least-squares analysis”, Methods in Enzymology, 117, 301–342.

    Article  CAS  Google Scholar 

  • Leguérinel, I., Spegagne, I., Couvert, O., Gaillard, S. and Mafart, P. (2005) “Validation of an overall model describing the effect of three environmental factors on the apparent D-value of Bacillus cereus spores”, International Journal of Food Microbiology, 100, 223–229.

    Article  Google Scholar 

  • Levenspiel, O. (1972) “Interpretation of batch reactor data”. In Chemical Reaction Engineering. 2nd ed. Wiley, New York, USA.

    Google Scholar 

  • Ling, A.C. and Lund, D.B. (1978) “Determining kinetic parameters for thermal inactivation of heat-resistant and heat-labile isozymes from thermal destruction curves” , Journal of Food Science, 43, 1307–1310.

    Article  CAS  Google Scholar 

  • Linton, R.H., Carter, W.H., Pierson, M.D. and Hackney, C.R. (1995) “Use of a modified Gompertz equation to model nonlinear survival curves for Listeria monocytogenes Scott A”, Journal of Food Protection, 58, 946–954.

    Google Scholar 

  • López, P., Sala, F.J., Fuente, J.L., Condón, S., Raso, J. and Burgos, J. (1994) “Inactivation of peroxidase, lipoxygenase, and polyphenol oxidase by manothermosonication” , Journal of Agricultural and Food Chemistry, 42, 252–256.

    Article  Google Scholar 

  • Mafart, P. and Leguérinel, I. (1998) “Modelling combined effect of temperature and pH on the heat resistance of spores by a non-linear Bigelow equation” , Journal of Food Science, 63, 6–8.

    Article  CAS  Google Scholar 

  • Malcata, F.X. (1992) “Starting D -optimal designs for batch kinetic studies of enzyme-catalyzed reactions in the presence of enzyme deactivation” , Biometrics, 48(3), 929–938.

    Article  CAS  Google Scholar 

  • McKellar, R.C. and Lu, X. (eds) (2004) “Modelling microbial responses in food”. CRC Press, Boca Raton, USA.

    Google Scholar 

  • McMeekin, T.A. and Olley, J. (1986) “Predictive microbiology”, Food Technology in Australia 38(8), 331–334.

    Google Scholar 

  • Morales-Blancas, E.F., Chandia, V.E. and Cisneros-Zevallos, L. (2002) “Thermal inactivation kinetics of peroxidase and lipoxygenase from broccoli, green asparagus and carrots” , Journal of Food Science, 67, 146–154.

    Article  CAS  Google Scholar 

  • Mottram, D.S., Wedzicha, B.L. and Dodson, A.T. (2002) “Acrylamide is formed in the Maillard reaction”, Nature, 419(6906), 448–449.

    Article  CAS  Google Scholar 

  • Peleg, M., Penchina, C.M. and Cole, M.B. (2001) “Estimation of the survival curve of Listeria monocytogenes during non-isothermal heat treatments” , Food Research International, 34(5), 383–388.

    Article  Google Scholar 

  • Ramos, I.N., Brandão, T.R.S. and Silva, C.L.M. (2005) “Integrated approach on solar drying, pilot convective drying and microstructural changes”, Journal of Food Engineering, 67, 195–203.

    Article  Google Scholar 

  • Seber, G.A.F. and Wild, C.J. (1989) “Nonlinear Regression”. Wiley, New York, USA.

    Google Scholar 

  • Steet, J.A. and Tong, C.H. (1996) “Degradation kinetics of green colour and chlorophylls in peas by colorimetry and HPLC” , Journal of Food Science, 61(5), 924–931.

    Article  CAS  Google Scholar 

  • Steinberg, D.M. and Hunter, W.G. (1984) “Experimental design: review and comment”, Technometrics, 26(2), 71–97.

    Article  Google Scholar 

  • Stewart, W.E., Caracotsios, M. and Sorensen, J.P. (1992) “Parameter estimation from multire- sponse data”, AIChE Journal, 38(5), 641–650.

    Article  CAS  Google Scholar 

  • Van Boekel, M.A.J.S. (1996) “Statistical aspects of kinetic modelling for food science problems”, Journal of Food Science, 61(3), 477–485, 489.

    Article  Google Scholar 

  • Van Impe, J.F., Nicolaï, B.M., Martens, T., De Baerdemaeker, J. and Vandewalle, J. (1992) “Dynamic mathematical model to predict microbial growth and inactivation during food processing”, Applied and Environmental Microbiology, 58(9), 2901–2909.

    Google Scholar 

  • Xiong, R., Xie, G., Edmondson, A.S., Linton, R.H. and Sheard, M.A. (1999) “Comparison of the Baranyi model with the Gompertz equation for modelling thermal inactivation of Listeria monocytogenes Scott A”, Food Microbiology, 16, 269–279.

    Article  Google Scholar 

  • Zwietering, M.H., Jongenburger, I., Rombouts, F.M. and Van't Riet, K. (1990) “Modelling of the bacterial growth curve” , Applied and Environmental Microbiology, 56(6), 1875–1881.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brandāo, T.R.S., Silva, C.L.M. (2009). Introduction to Integrated Predictive Modeling. In: Costa, R., Kristbergsson, K. (eds) Predictive Modeling and RiskAssessment. Integrating Safety and Environmental Knowledge Into Food Studies towards European Sustainable Development, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68776-6_1

Download citation

Publish with us

Policies and ethics